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Abstract—The wave mechanics of a pair of hard core particles is critically
analyzed to discover its several important untouched aspects. Identifying the
possible weakness of the previous treatments in defining the relative dynam-
ics of two hard core particles and related boundary conditions, it finds the cor-
rect form of their state function which can serve as an important basis of the
microscopic theory of a system like liquid helium.
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A: Introduction

The wave mechanics of two hard core (HC) identical particles (say P1 and P2)
interacting through a central force forms an important subject of study because
it serves as a basis of microscopic theories of many body quantum systems
(MBQS) such as liquid helium1–3. The Schrodinger equation of P1 and P2 in
center of mass (CM) coordinates can be written as

(1)

Here VHC(r) represents the HC interaction (i.e. V(r < s ) = ¥ and V(r s ) =
0 with s being the HC diameter of a particle) between P1 and P2 and

(2)

describes their state of momenta, k = k2 - k1 and K = k1 + k2. All notations, in-
cluding R = (r1 + r2)/2, r = (r2 - r1), etc., have usual meaning. The k(r) repre-
senting the relative motion of P1 and P2 satisfies

(3)

with Ek = E - h2K2/4m. Since Equation 3 can not be solved as such due to non-
analytic nature of VHC(r) at r < s , conventional approaches1–3 use a boundary
condition k(r < s ) = 03 or its equivalent (viz. the Jastrow correlation factor4)
to find a k(r) that agrees with the fact that two HC particles do not overlap.
However, during the course of our recent work5,6 on the theory of a system of
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interacting bosons such as liquid 4He (our other paper in this issue6) we made a
critical analysis of the wave mechanics of P1 and P2 and discovered its impor-
tant untouched aspects (cf. Section B) and correct form of k(r) (cf. Section C).
Here we present a brief report of our analysis.

B: Important Aspects and Their Analysis

B(1): Real Dynamics of a Pair in a MBQS

To a good approximation particles in a MBQS like liquid helium represent
hard balls moving freely on the surface of a constant negative potential, - V0

5.
Naturally, P1 and P2 encounter VHC(r) only when they collide with each other.
While this elastic collision leads to an exchange of momenta k1 and k2, the fact
remains that P1 and P2 (before and after their collision) have free particle mo-
tion. Analysing another possible situation in which mutually colliding P1 and
P2 also collide simultaneously with other particle(s), we find that k1 and k2 (or
k and K) after such collision may assume new values, k1 and k2 (or k and K )
but once again P1 and P2 retain their free particle motion. As such the inter-
particle interactions make a pair embedded in a MBQS scatter/jump from its
one state to another state of possible k and K, while such a state of the pair in
free space simply remains unchanged. Evidently, the basic nature of the dy-
namics of a pair in two situations does not differ, which means that the states
of P1 and P2 in a MBQS, in spite of their interaction with other particles, can
be described by Equation 1.

B(2): Correct Description of Relative Motion

We note that the non-relativistic dynamics of two particles interacting
through a central force can be separated mathematically into two components7

expressing their relative motion ( k(r)) and CM motion (exp[i · K · R]) (cf.
Equations 1–3). Notably, while (R, r) defines a general state of the pair with
P1 and P2 having their relative as well as CM motions, exp[i · K · R] represents
a state in which its relative motion is absent (i.e., the pair can be treated as a
single body of mass 2m) and, similarly, k(r) describes that motion of P1 and
P2 in which their CM does not move which means

K = 0 and k1 = - k2 = q (say) (4)

Evidently, P1 and P2 in their relative dynamics have equal and opposite mo-
menta (q, - q ) and their distance from their CM, rCM(1) and rCM(2), obviously,
satisfies

rCM(1) = - rCM(2) (5) 



where rCM represents a position vector in the frame attached to the CM. As
such, Equations 4 and 5 define an important feature of k(r) and conclude that
the relative motion of P1 and P2 maintains a center of symmetry at their CM.
However, these microscopic details of k(r), that we use to find its correct
form, are not used by conventional theories1–3.

B(3): Relative Motion in General Perspective

Since the basic fact, that k(r) of Equation 2 represents that motion of P1
and P2 in which their CM does not move, holds good even for a case of two
particles having unequal masses (m1 > m2, say), k(r) of such particles too
would hold Equation 4 as well as

m1 · rCM(1) = - m2 · rCM(2) (6)

which is corroborated by all experiments that can reveal the k(r) of a two
body system such as single electron atom/ion (e.g., H atom and He+ ion), di-
atomic molecules (e.g., HCl), etc. As stated by Schiff7 we, apparently, have
two different choices (CH1 and CH2) of a frame of observation to construe

k(r). In CH1, we observe k(r) as a motion of P2 relative to P1 or vice versa,
while in CH2 we detect it as a motion of two particles relative to their fixed
CM. Evidently, only CH2 choice is consistent with Equations 4 and 5/6. The
CM can be at rest in CH1 also provided P1 is infinitely heavy (i.e., m1 m2) or it
is rigidly fixed at one point. However, since these conditions do not apply to
particles in a MBQS like liquid He, use of CH1 choice to define their

k(r) in1–3 can not render its correct form. The simple fact that (R, r) can be
mathematically separated into k(r) and exp[i ·K ·R], does not ensure the con-
sistency of a k(r) with Equations 4 and 5/6 and a k(r) determined as such by
solving Equation 3 would fail to embody the useful details defined by Equa-
tions 4 and 5.

B(4): Correct Boundary Condition

The boundary condition, k(r s ) = 0 (or its equivalent Jastrow correlation
factor4) used in conventional theories1–3, implicitly presumes that r = s can be
determined precisely (i.e., with an uncertainty r = 0) which implies that mo-
mentum uncertainty k is infinitely large. However, since k = ( k2 - k 2)1/2

for the pair can be at the most equal to k itself8, r = 0 would not hold with un-
certainty principle unless k is infinitely large. Naturally, the degree of incon-
sistency would assume prominence, particularly, for particles of low momen-
tum, viz., q < / s (i.e., /2 > s with = 2( /q), for which uncertainty in the
positions of each particle, r = /2, becomes much larger than r ( s ) and the
statement r s as well as the boundary condition, k(r s ) = 0, lose their
meaning. Evidently, one needs to find its correct alternative. In this context we
take cognizance of the fact that a particle in wave mechanics manifests itself
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as a wave packet (WP) of size /2 (i.e., a sphere of diameter /2) and because
two HC particles do not overlap, their representative WPs should also have no
overlap. Thus, the separation ( r ) between two particles should satisfy r

/2 (i.e., k r 2 ) which is also demanded by uncertainty relation, k r 2 ,
because we expect k k, and r r.

C: Correct Form of k(r) and Related Aspects

Using the inferences of Section B, this section concludes the correct form of

k(r) and analyzes other related aspects as follows.

C(1): (q, -q) or SMW Pair Waveform

Since two particles in their physically possible state always have r s and
VHC(r s ) = 0, their dynamics can, possibly, be described by the hamiltonian
of two non-interacting particles,

(7)

and its eigenfunction

with

(with unit normalisation constant and i = 2ki
2/2m) provided U± is subjected to

the condition /2 r to take care of VHC(r). As such we have (R, r) U± and

(8)

with U+ and U- having usual meaning, = 0 for U+,  = for U- and (K) + (k)
= 2[K2 + k2]/4m = 2[k1

2 + k2
2]/2m. Comparing Equations 2 and 8 and using k =

2q we have

(9)

We note that k(r)± is a kind of stationary matter wave (SMW) that modu-
lates the probability (|U±|2 = | ±|2) of finding two particles at their relative
phase position, = k · r. We have

(10)



where g( ) represents phase correlation factor which will be analyzed in Sec-
tion C(3). The fact that k(r)± is the superposition of two particles of momenta
q and - q not only agrees with Equation 4 but also implies that U± represents a
(q, - q ) pair (proposed to be known as SMW pair) moving with CM momentum
K.

C(2): Equivalence of k(r)±

Since two particles always collide at their CM (r = 0), their k(r) has to have
its zero at r = 0. While this condition is satisfied as such by k(r)- , whose anti-
symmetry for the exchange of two particles corroborates the contention2 that
HC particles in r-space behave the way fermions behave in k-space, we also
find that k(r)+

k(r)- because they differ only in the locations of the origin
= + = 0. For k(r)+, it is located at = 0—the central point of an anti-

nodal region (AR), and for k(r)- at = (the nodal point) of a SMW. To un-
derstand this equivalence of k(r)+ and k(r)- we note that in a wave mechani-
cal superposition, there is no way to find whether two particles after their
collision have bounced back on the respective sides of their CM or they ex-
changed their positions across this point. Since the former case represents the
self superposition (SS) of each particle, it can be best described by k(r)+ be-
cause VHC(r) does not operate in such superposition. However, the latter case
implying mutual superposition (MS) of P1 and P2 should be represented only
by k(r)- because the corresponding wave function has to vanish at r = 0 due to
VHC(r) operating between these particles. As such, k(r)+ and k(r)- represent
equivalent configuration.

C(3): SMW Pair and Phase Correlation

The possibility that P1 and P2 may rest simultaneously in a single AR of

k(r) is ruled out because this does not satisfy the condition that k(r) has to
have its zero at their CM. Evidently, P1 and P2 in a configuration of their least
separation can occupy two separate close by ARs of k(r)±. We note that this
configuration is consistent with excluded volume condition (a consequence of
the HC nature of the particles)9 and is characterized by r  = r2 - r1  = /210

which not only implies that = 2 - 1  = 2 but also shows that our condi-
tion r /2 is, naturally, satisfied by SMW formation. Further, since the phase
correlation factor, g( ) = | k(r)±|2, varies periodically from g( ) = 0 at = (2n +
1) to g( ) = 2.0 at = 2n (with n = 1, 2, 3, ...) implies that SMW formation
renders a kind inter-particle phase correlation or a kind of binding that binds P1
and P2 in -space at positions separated by = 2n (with n = 1, 2, 3, ...). Our
other paper6 not only finds the potential equivalent of g( ) but also concludes
that particles also acquire a kind of collective binding in r-space when a weak
attraction is switched on the state of HC particles in SMW configuration. It is
obvious10 that -correlations can be observed only when the physical condition
of the system forces two particles to remain always in the state k(r)± of their
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wave mechanical superposition as found in superfluid phase of liquid 4He but
not in normal fluid phase where this requirement is not fulfilled5,6.

C(4): Dominance of Wave/Particle Nature

While the least possible separation, r = /2, between two particles of q <
/ s or /2 > s depends on their q through q r  = , similar separation, r = s ,

between two particles of q > / s , is independent of q. Evidently, the wave na-
ture fails to prevail over VHC(r) to have q r  = for high q particles of q >

/ s , and as such, /2 > s seems to precisely characterize a physical state in
which two HC particles would behave like waves or otherwise as particles.

C(5): VHC(r) and its Equivalence with (r)-Repulsion

We find that a k(r)± defining the superposition of two particles of /2 > s is
independent of s . This is consistent with: (i ) the basic principle of image reso-
lution which implies that P1 of /2 > s can not resolve a structure of size
s within the WP of size = /2 (> s ) of P2 or vice versa and (ii) the experimen-
tal fact that the patterns of interference and diffraction of even strongly inter-
acting particles like electrons, neutrons, He atoms, etc., do not depend on s -
size of these particles11. As such, the details of k(r)± would not change when
s is infinitely small. Evidently, two HC particles in k(r)± state may be consid-
ered to have -size HC or (r)-repulsion. This implies that

(11)

where A represents the strength of (r) repulsion. Using U- (Equation 8) as a
function representing a |K, q > pair state of H(2) (Equation 11) along with the
fact that two particles in their relative motion always have r1 = - r2 (Equation
5), which implies that r1 = r2 is possible only when r1 = r2 = 0 (the CM of the
pair and a nodal point of U- where U - = 0), we can show by simple integration
over the limit r = 0 to r = 10 that

(12)

and

(13)

Although, the real value of A is unimportant because of A · (r1 - r2) = 0,
however, we address it in Section 2.7 of our next paper6.

C(6): U - Pair Waveform for a Single Particle

Each particle of a SMW pair, being a part and parcel of it, needs to be repre-
sented by U+ or its equivalent U- pair waveform. However, we propose to use



U- because it embodies the fact that the pair waveform of two HC particles
must vanish at their CM r1 = r2 = 0, more clearly than U+. As such for the i th
particle, we have

(14)

(with i = 1 or 2). However, in doing so Ri could, rightly, be identified as the po-
sition of the CM of i th particle (not the CM of the pair), and ri as the coordi-
nate of a point (within the WP of i th particle) measured from a nodal point of

k(r)- on the line joining the two particles. Each particle seems to have two mo-
tions: (i) the q-motion of energy 2q2/2m and (ii) the K-motion of energy
2K2/8m.

C(7): Rearrangement of H(2)

Use of U- pair waveform for a single particle can be accepted without any
difficulty because under the approximation VHC(r) A · (r), U- has been
shown to be an eigenfunction of H(2) and H0(2) = H(2) - VHC(r) ( cf. Eqn.7)
can be rearranged into a form compatible with Equation 14. We have

(15)

with hi = - (2/2m) · i
2 being the hamiltonian of i th free particle (i = 1 or 2)

which can also be represented by h(i) when the particle symbolizes a SMW
pair. This gives

(16)

Using |K1, q1 |K2, q2 as an eigenstate of H(2) (Equation 16) with |Ki, qi being
the state of i th particle defined by U-(i) (Equation 14)—an eigenfunction of
h(i), we find that

(17)

because the representation of two particles by separate U -(1) and U -(2) pair
waveforms does not change the reality that their relative motion satisfies r1 =
- r2 (Equation 5), which implies that r1 = r2 is possible only when r1 = r2 = 0 for
which U-(1) = U-(2) = 0. Evidently, we have H(2) = 2 h(1) = 2 h(2)  (=
E(2) given by Equation 13). The fact, that E(2) is basically the kinetic energy
of the pair evinces that the main role of VHC(r) is nothing but to scatter the pair
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from its one state to another state of K and k as envisaged in Section B(1). Our
k(r) and other results (Equations 11–13 and 17) are not expected to agree

with those of pseudo-potential approach3, which also concludes VHC(r)  (r)-
repulsion, because the latter3 does not use /2 r and the basic features
(Equations 4 and 5) of k(r)- .

D: Concluding Remarks

By using different aspects of wave mechanics in their right perspective, this
paper concludes the correct form of the wave function (U- , Equation 8) that
can represent two HC particles in a state of their wave mechanical superposi-
tion. While it finds that each particle of the pair can also be represented by the
pair waveform U-(i) (Equation 14) as a separate entity, the way particle-parti-
cle correlation effects can be treated in a MBQS like liquid 4He is discussed in
Jain6.

One may find that: (i ) the way k(r), appearing in Equation 2, is obtained ei-
ther as a solution3 of the Schrodinger equation (viz. Equation 3) or by using
Jastrow type approach4, does not take cognizance of the basic characteristics
of k(r) (i.e., Equations 4 and 5) and (ii) the boundary condition k(r s ) =
0 or its equivalent as used in references 1–3 loses its meaning for low momen-
tum particles of /2 > s (cf. Section B(4)). Obviously, because of all such
weaknesses of these approaches1–3, the direction for finding the correct micro-
scopic theory of a system like liquid 4He has been missed for so long. This
point is clearly demonstrated by the fact that by using a new approach free
from these weaknesses we succeeded5,6 in formulating the long awaited theory
of liquid 4He which has unmatched accuracy, simplicity and clarity. Moreover,
as discussed briefly in our third paper reported in this issue12, we also find that
the framework of our new approach can help us in developing a correct under-
standing of other MBQS and in unifying the physics of widely different sys-
tems of bosons as well as fermions.
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