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Abstract—This paper reports an entirely new approach to the microscopic
understanding of the behavior of a system of interacting bosons such as liquid
4He. It reveals that each particle in the system represents a (q, - q) pair (SMW
pair) moving with a center of mass momentum K. An energetically weak ef-
fect, resulting from inter-particle attraction and the overlap of wave packets,
locks these particles in phase ( ) space at = 2n (with n = 1, 2, 3,...) and
leads them to acquire a kind of collective binding. The entire system below -
point behaves like a single macroscopic molecule. The binding is identified as
an energy gap between the superfluid and normal states of the system. The -
transition, resulting from inter-particle quantum correlations, is the onset of
an order-disorder of particles in their -space and their Bose Einstein conden-
sation (BEC) in the ground state of the system defined by q = /d and K = 0.
The fractional density of condensed particles (nK= 0(T)) varies monotonically
from nK= 0(T ) = 0 to nK= 0(0) = 1.0. The -transition represents the occurrence
of twin phenomena of broken gauge symmetry and phase coherence. In vari-
ance with the conventional belief, it is concluded that the system can not have
p = 0 condensate. In addition to the well known modes of collective motions
such as phonons, rotons, maxons, etc., the superfluid state also exhibits a new
kind of quantum quasi-particle, omon, characterized by a phononlike wave of
the oscillations of momentum coordinates of the particles. The theory ex-
plains the properties of He-II, including the origin of quantized vortices, crit-
ical velocities, logarithmic singularity of specific heat and related properties,
etc., at the quantitative level. It conforms to the excluded volume condition,
microscopic and macroscopic uncertainty, and vindicates the two fluid theory
of Landau, an idea of macroscopic wave function envisaged by London, etc.
As discussed elsewhere in this journal, the framework of this theory can also
help in unifying the physics of widely different systems of interacting bosons
and fermions.

Keywords: bosnic system — superfluidity — microscopic theory — many
body system

1.0: Introduction

Liquid 4He (LHE-4), a system of interacting bosons (SIB), has been investigat-
ed extensively for its unique behavior at low temperature (LT). The wealth of
experimental and theoretical results has been reviewed in several books and
articles, (e.g., references 1–10) and other references cited therein. In the
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process of cooling LHE-4 transforms from its normal (N) phase (He-I) to su-
perfluid (S) phase (He-II) at T = 2.17 K. He-II exhibits several interesting
properties including superfluidity, i.e., zero viscosity ( = 0) for its flow
through narrow channels. All these properties, including the fact that helium
remains liquid down to absolute zero, can not be understood as classical be-
havior. They are, obviously, connected with a quantum behavior at the macro-
scopic level and LHE-4 provides unique opportunity for its investigation, indi-
cating that the investigations are of fundamental importance.

Soon after the experimental discovery11 of superfluidity of He-II London12

proposed that the phenomenon should arise from p = 0 condensate defined by
np= 0(T ) (a macroscopically large fraction of 4He atoms occupying a single par-
ticle state of momentum p = 0 as a result of their Bose Einstein condensation
(BEC)5). The idea was imported from a well known conclusion that a system of
non-interacting bosons (SNIB) below certain temperature (TBEC)5,13 has non-
zero np= 0(T ) increasing smoothly from np= 0(T ) = 0 to np= 0(T = 0) = 1.0 through
np= 0(T < T ) < 1.0. It was criticized at an initial stage by Landau14 because
LHE-4 is not a SNIB. However, it received grounds when Bogoliubov’s theory
of weakly interacting bosons15 concluded that the increasing strength of inter-
actions simply depletes the magnitude of np= 0(T). Widely different mathemati-
cal models such as Bogoliubov prescription15, pseudo-potential technique16,
Jastrow formalism17,18, Feenberg’s perturbation2,18, etc., have been used to cal-
culate np= 0(T) assumed to exist in He-II and to develop a general framework of
microscopic theories hereafter known as conventional theories (CTs). While
recent papers by Moroni et al.19 and Sokol20 provide the present status of our
conventional understanding of LHE-4, several articles published in a recent
book10 discuss the role of BEC in accounting for the LT behavior of widely dif-
ferent many body quantum systems. It appears that the CTs follow two differ-
ent approaches, A1 and A2.

A1: This approach has been developed by Bogoliubov15, Beliaev21,22,
Hugenholtz and Pines23, Lee and Yang24, Brueckner and Sawada25, Wu26,
Sawada27, Gavoret and Nozieres28, Hohenberg and Martin29, and DeDominicis
and Martin30 and reviewed by Woods and Cowley4 and Toyoda31. While the ap-
proach has been introduced elegantly by Fetter and Wadecka32, its important
aspects have been summed up, recently, by Nozieres33 and Huang34. As such, a
theoretical formulation following this approach starts with the hamiltonian
written in terms of the second quantized Schrodinger field and then it proceeds
by using several important inferences such as: (i) the hard core (HC) potential
can be used perturbatively by using a method such as pseudopotential
method16, (ii) coupling constant can be related directly to the two body scatter-
ing length ( s )22, (iii) a dimensionless expansion parameter (n s 3) can be used to
perform perturbation calculation31, and (iv) the so called “depletion” effect
which is related to np= 0(T) can be treated in the conventional perturbation
method by introducing c-number operator for p = 0 bosons35. Finally, using the
quantum statistical mechanical expectation value of the second quantized field



operator as an order parameter (OP) of the transition23,29, it calculates relevant
part of free energy (F ) as a function of this OP in order to explain superfluidity
and related properties. For this purpose one uses sophisticated mathematical
tools as discussed in31,36.

A2: Theoretical formulations using this approach aim at finding radial dis-
tribution function (RDF), g(r), and liquid structure factor, S(Q), which can be
used to calculate the ground state (G-state) properties, excitation spectrum,
different thermodynamic properties and equation of state; the superfluid be-
havior is explained in terms of one body density matrix (r) whose asymptotic
value at large r gives the condensate fraction np= 0(T)37. While different aspects
of the approach and related subject have been discussed by Feenberg2, Crox-
ton38, Ceperley and Kalos39 and Yang37, its application to LHE-4 has been re-
viewed elegantly by Smith et al.40, Campbell and Pinski41, Schmidt and Pand-
haripande42, Reatto43, and Ristig and Lam44. Widely different methods of
computer calculation of g(r), S(Q ) and other properties of the system are dis-
cussed and reviewed in references 45–47. The approach has been used, recent-
ly, by Moroni et al.19 and Kallio and Piilo48 to determine the properties of
LHE-4 and electron gas, respectively. A comprehensive list of important pa-
pers related to this approach is also available in these papers19,48.

As such, a very large number of theoretical papers have been published on
the subject49. However, neither a microscopic theory that explains the proper-
ties of LHE-4 could emerge nor has the existence of non zero np= 0(T) in He-
II been proved experimentally beyond doubt. Reviewing the progress of theo-
retical work at the fifteenth Scottish University summer school (1974),
Rickayzen50 stated, “There is no microscopic theory of superfluid 4He. There
are many mathematical models which appear to provide insight into the behav-
ior of superfluids but there is no theory which provides quantitative prediction
that agree with observation. Even some of the most widely held assumptions
of the theory such as the idea of condensation in a zero momentum state can
not be said to be proved beyond reasonable doubt.” Concluding a review arti-
cle, Woods and Cowley4 also observe, “Despite all the experimental informa-
tion and the numerous theoretical discussions there is still no convincing theo-
ry of the excitations which begins with the known interaction between helium
atoms.” At the same time Kleban51 proved that theories assuming the existence
of p = 0 condensate contradict the excluded volume condition (EVC)—a direct
consequence of HC nature of particles; however, his work was not given due
importance. In a recent article Sokol20 also observes that: (i ) neutron inelastic
scattering experiments have so far not given any indication of the direct evi-
dence (i.e., a -function peak in the momentum distribution, n(p), at p = 0) of
the existence of p = 0 condensate (np= 0(T )) in He-II and it is unlikely that this
goal will ever be reached, and (ii) in the absence of detailed microscopic theo-
ry the estimate of np= 0(0) » 0.1 from different experiments depends on current
theories, models, and empirical relations used to interpret experimental results
and if their underlying assumptions are incorrect, such estimates of
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np= 0(T ) will have no meaning. Evidently, the accuracy of our present under-
standing about the existence of np= 0(T) is seriously doubted and a correct mi-
croscopic theory of the system is still awaited.

As such, the only way we can understand the properties of LHE-4 is the two
fluid phenomenology of Landau14 supplemented by the idea of quantized cir-
culation presented by Onsager52 and Feynman53. However, this combination
also has several shortcomings which have been discussed in detail by Putter-
man5 who remarks, “The two fluid theory plus quantization bears striking sim-
ilarity to the old quantum theory. Just as the old quantum theory had to be
modified in light of the wave particle duality, one must expect that our deter-
ministic two fluid theory of He-II will be modified by macroscopic wave parti-
cle duality.” Underlining the failure of numerous efforts to conclude a theory
that explains the properties of He-II, Putterman5 also speculates that perhaps
the theory of natural phenomena, the Wave Mechanics, is not equipped with
basic principles to explain the superfluidity of He-II. The above mentioned
facts motivated us to use an entirely new approach to develop the long awaited
theory of LHE-4 type SIB reported in this paper. Our approach uses wave na-
ture and related aspects in their right perspective and, for the reasons listed in
Section 2.8, envisages that the origin of superfluidity and related properties of
LT phase of a SIB lies in the BEC condensation of (q, - q) pairs in a state of
their center of mass momentum K = 0. This is one of the important differences
in our approach and the conventional approach which emphasizes BEC of par-
ticles in a single particle state of p = 0. The salient aspects of our theory are
available in Jain54.

The paper has been arranged as follows. Starting from a N-particle micro-
scopic quantum hamiltonian and using the usual method of solving a Schro-
dinger equation, Section 2.0 concludes the basic form of the state functions of
N HC particles and analyzes the evolution of a bosonic system with falling T,
G-state energy of the system, effective inter-particle potential and (q, - q) pair
condensation as a natural basis of -transition, etc. While Section 3.0 deter-
mines the relations for quantum correlation potential controlling the position
of particles in phase space, Section 4.0 finds the relation for T . While differ-
ent aspects of the S-phase of the system, e.g., the configurations of particles,
nature of thermal excitations, the origin of two fluid behavior, (q, - q) bound
pairs and energy gap between S- and N-configurations, superfluidity and relat-
ed properties, quantized vortices, broken gauge symmetry or off diagonal long
range order (ODLRO), logarithmic singularity of specific heat, etc., are stud-
ied in Section 5.0, the thermodynamic behavior of the N-phase is analyzed in
Section 6.0 and how best our theory accounts for the properties of He-II at
quantitative scale is discussed in Section 7.0. Comparing the salient aspects of
A1 and A2 approaches of CTs with corresponding aspects of our approach in
Section 8.0, we make some important concluding remarks in Section 9.0 and
discuss the free energy and order parameter of -transition in Appendix A. Fi-
nally, it may be mentioned that a critical analysis of the wave mechanics of



two HC particles, which serves as an important basis of this work, and the way
the new approach of this work may help in unifying our microscopic under-
standing of widely different systems of interacting bosons and fermions are
discussed elsewhere in this journal55,56. 

2.0: Basic Aspects of Theory

2.1: The System

The microscopic quantum hamiltonian of a system of N-interacting bosons
can be expressed as

H (N ) = -
h̄2

2m

NX

i

2
i +

NX

i< j

Vi j (r = |ri - rj |) (1)

where notations have their usual meaning. The important aspects of the sys-
tem can be summed up by the following points:

2.1.1. To a good approximation Vij(r) could be considered as the sum of: (i)
the repulsive potential V R

i j (r) approximated to VHC(r) (defined by Vij(r < s ) = ¥
and Vij(r s ) = 0 with s = HC diameter), and (ii) a relatively long range weak
attraction, V A

i j (r).
2.1.2. As V A

i j (r) can be replaced by a constant negative external potential
(say - V0)18, at the first stage we are, therefore, left with only VHC(r) to deal
with. As such the particles in the system represent hard balls moving freely on
the surface of constant potential  - V0. The only role of VHC(r) is to restrict par-
ticles (in fact we should better say their representative wave packets) from
sharing a single r point.

2.1.3. While the main role of V A
i j (r) » - V0 is to keep all particles confined to

a fixed volume (V), its small but important effect leads the particles to have:
(i ) their relative phase position ( ) locked at = 2n (with n being an inte-
ger number) (cf. Section 3.0), and (ii) a kind of collective binding among all
particles of the system as concluded in Section 5.4, where we study the second
stage role of V A

i j (r) by using it as a perturbation on the states of HC particles
and find that the system possesses an energy gap between its N- and S-states.

2.1.4. Although translational invariance of fluids implies that momentum of
a particle be a good quantum number18, p. 361 and the only sensible single parti-
cle function should be a plane wave. However, since the use of plane waves
does not forbid possible overlap of any two HC particles we have serious diffi-
culties in avoiding the divergence of H(N) to ¥ . To this effect, while CTs use
methods such as pseudopotential technique16, Jastrow formalism17,18, etc., this
theory uses an entirely new approach based on several new inputs summed up
in the following section.

2.2: New Inputs

In what follows from Section 2.1, the dynamics of two HC particles should
be used as an important basis of the theory of a SIB. Analysing these dynamics
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at length, we discovered its several untouched aspects55 which serve as the new
inputs of our theory that can be summarized as follows:

2.2.1: The correct pair waveform. While the dynamics of two HC particles
(say, P1 and P2) in a SIB can be described by the hamiltonian55

H (2) =

µ
-

h̄2

4m
2
R -

h̄

m
2
r + A · (r)

¶
, (2)

the pair waveform

U± = k(r)± · exp(iK · R) · exp[- i( (K ))], (3a)

with

k (r )± = Ö 2 · cos[( + k · r/ 2] · exp[- i (k)t / h̄] (3b)

describing their relative motion represents an eigenfuntion of H(2). We have k
= 2q, = 0 for U + (or k(r)+), = for U - (or k(r)- ) and other notations hav-
ing their usual meaning55. We also have

E(2) = á H (2) ñ =
h̄2 K 2

4m
+

h̄2k2

4m
(4)

2.2.2: /2 d condition. P1 and P2 in their k(r) maintain a center of sym-
metry at their CM and satisfy /2 r condition (cf. Equations 4 and 5) and
Section B(3) of reference 55). For a system like liquid 4He, /2 r would
read as /2 d, where d is the average nearest neighbor separation decided ab-
solutely by the inter-particle interactions. If two neighboring particles happen
to have /2 > d, they would have mutual repulsion (known as zero point repul-
sion) forcing an increase in d. However, if the inter-particle interactions do not
permit desired increase in d, the pair would absorb necessary energy from in-
teracting surrounding to have /2 = d.

2.2.3: Inter-particle phase correlation. k(r)±, being the superposition of
two plane waves of q and - q momenta, represents a stationary matter wave
(SMW) that modulates the probability

| k (r )± |2 = |U ± |2 = 2 · cos2[( + k · r)/ 2] = g( ) (5)

of finding two particles at a separation, = k.r, in -space, with g( ) represent-
ing their inter-particle -correlation. As such the pair adopts a (q, - q) pair
configuration and it is, rightly, identified55 as (q, - q) pair or SMW pair. For the
first time, -correlation is identified to play an important role in deciding the
LT properties of the system. To what extent the radial distribution factor
g(r) (i.e., the r-correlation) remains relevant is discussed in Section 5.1.

2.2.4: Representation of a particle by U- pair waveform. Each particle in a
SMW pair can be represented either by U+, when presumed to be in its self su-



perposition (SS) state, or by U- , if presumed to represent a mutual superposi-
tion (MS) state of the pair. However, since U+ and U- are equivalent (cf. Sec-
tion C.2 of reference 55), we propose to use

U - (i) = Ö 2 sin[(q · ri )/ 2] · exp(iK · Ri ) · exp[- i ( (K ) + (q))t / h̄], (6)

to describe ith (i = 1 or 2) particle of the SMW pair because it embodies the
fact that the pair waveform of two HC particles must vanish at their CM r1 = r2

= 0, more clearly than U+. However, in doing so Ri in Equation 6 needs to be
identified as the position of the CM of ith particle (not the CM of the pair) and
ri as the coordinate of a point (within the WP of ith particle) measured from a
nodal point of k(r)- on the line joining the two particles in a pair. The single
particle energy and momentum operators for the K-motion should be
- (h̄2/ 8m) · 2

Ri
and - i(h̄/ 2) · Ri , respectively. It appears that each particle

has two motions: (i) the q-motion of energy (q) = h2q2/2m and (ii) the K-mo-
tion of energy (K) = h̄2K2/8m. 

2.2.5: (q, - q) Pair condensation. Because each particle in the system repre-
sents a (q, - q ) pair moving with CM momentum K55, -transition should, nat-
urally, be a consequence of BEC of such pairs. Other strong reasons for (q, - q)
pair condensation to be a basis of -transition are discussed in detail in Section
2.8.

2.3: U- Pair Waveform and Rearrangement of H0(N)

Represention of each particle of the system by separate U- pair waveform
(as proposed above) requires rearrangement of

H0(N ) = H (N ) -
X

i> j

Vi j (ri j ) H (N ) - A ·
X

i> j

(ri j ),

for their compatibility. We can pair particles in a cyclic order by rearranging
H0(N)

H0(N ) =
NX

i

hi =
NX

i

1

2
[h i + hi+ 1] =

NX

i

h(i), (7)

where we assume that hN+1 = h1 and define

h i = -
h̄2

2m
2
i and h(i) = -

h̄2

8m
2
Ri

-
h̄2

2m
2
ri

. (8)

Alternatively we can also have

H0(N ) =
NX

i

h i =
N / 2X

j

1

2
[h2 j - 1 + h2 j ] +

1

2
[h2 j + h2 j - 1]

=
N / 2X

j= 1

h(2 j - 1) + h(2 j). (9)
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Apparently, Equation 7 can be preferred over Equation 9 because the latter de-
mands N to be even. For the same reason one can also prefer another method
discussed in our earlier report54, which has no such requirement, and it also
helps in including all possible SS as well as MS states that we may count for
any two particles in the system. However, since our basic objective is to re-
arrange H0(N) as a sum of N h(i) terms compatible with N separate U- pair
waveforms for N particles, one can use any suitable rearrangement. The details
of the method of rearrangement are unimportant.

2.4: State Functions of N HC Particles

In what follows from Section 2.2.4, each particle in the system can be repre-
sented by the pair waveform U- (Equation 6) and we can construct a state func-
tion of the system by following the standard procedure. Evidently, for N parti-
cles we have N different U- rendering = N! different n state functions of nth
quantum state of equal En. Using 

En(K ) =
NX

i

(K )i and En(k) =
NX

i

(k)i ,

we have

n = n(q) · n(K ),

n(q) =

"³
2
V

´N / 2 NY

i= 1

sin(qi · ri )

#

exp[- i En(k)t / h̄],

n(K ) =

"
A

³
1
V

´N / 2 X

pK

(± 1) p
NY

i= 1

exp[i (Ki · Ri )]

#

exp[- i En(K )t / h̄],

with A = (1/N!)1/2. Here pK(±1)p refers to the sum of different permutations of
K over all particles. While the use of (+1)p or (- 1)p in Equation 10b depends on
the bosonic or fermionic nature of the system for the spin character of its parti-
cles, the use of the restriction qj /d in Equation 10a treats the so called
fermionic behavior (in the r-space) of HC particles18,—bosons and fermions
alike. Evidently, a state function of N HC bosons should differ from that of
N HC fermions in the choice of (+1)p or (- 1)p. Note that different n counted
above take care of the permutation of k = 2q. We have

F n =
1

Ö S

SX

i

(i )
n , (11)

which represents the general form of a state function that should reveal the
physics of the system. Note that n represents a state where each particle, as a
WP of size /q, has a plane wave motion of momentum K.

(10)

(10a)

(10b)



2.5: G-State Energy

Following our other paper55, which concludes that for any two particles rep-
resented by U- pair waveform, we have A· (rij) = 0, which gives

En =
á F n | H0(N ) + A (ri j )| F n ñ

á F n | F n ñ
=

ª
F n

«««
PN

i h(i)
««« F n

­

á F n | F n ñ

=
NX

i

³
h̄2 K 2

i

8m
+

h̄2q2
i

2m

´
, (12)

where each particle is presumed to represent a SMW pair of CM momentum
Ki and relative momentum ki = 2qi. While Ki can have any value ranging be-
tween 0 to 1 , the lowest qi is decided by the volume vi of the cavity (formed by
neighboring particles) exclusively occupied by it. As such, in the G-state of the
system we have all Ki = 0. To fix the possible value(s) of qi for which E0 has its
minimum value, we note that the condition /2 d implies that a spherical
volume of diameter /2 belongs exclusively to a HC particle of /2 > s and
each particle in the G-state has lowest possible energy, i.e., largest possible

/2, the net G-state energy of the system should be

E0 =
NX

i

h2

8mv2/ 3
i

and
NX

i

vi = V (constant) (13)

if particles are assumed to occupy different vi. Simple algebra reveals that
E0 has its minimum value for v1 = v2 = ..vN = V/N. Obviously,

E0 = Nh2/8md2 = N 0. (14)

Note that inter-particle interactions enter in deciding the G-state energy
through d. In sharp contrast with E0 obtained from CTs1,18 our E0 does not de-
pend on s . The accuracy of this aspect of our result is well evident because two
particles of /2 > s cannot resolve the HC structure within the larger size WPs
of each other. The belief in such possibility would contradict the basic princi-
ple of image resolution.

2.6: Evolution of the System with Decreasing T

For a constant particle density of the system, (d - /2) decreases with de-
creasing T. In the process at certain T = Tc, when d - /2 vanishes at large,
q motions get freezed into zero point motions of q = q0 = /d. Evidently, the
system moves from a state of /2 d to that of /2 = d. While the former state
of  (= 2qd) 2 represents randomness of positions and, therefore, a disor-
der in -space, the latter state of = 2 defines an ordered state. Thus the parti-
cles in the system move from their disordered to ordered state in -space at Tc.
With all qj = q0, different (i )

n of Equation 11 become identical and n attains
the form of a single n (cf. Equation 10). As such, all the microstates merge
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into one at Tc, indicating that the entire system attains a kind of oneness57; the
system at T Tc is, therefore, described by

F n(S) = 0
n (q0) · e

n(K ), (15)

which is obtained by replacing all qj · rj in Equation 10 by q0r as for a given
r and q · r = (i.e., r cos = /2), lowest energy (or largest ) configuration de-
mands = 0; as such, each particle seems to be in s-wave state.

2.7: Effective Inter-Particle Interaction

In order to discuss the level of accuracy, to which our theory accounts for
the real interaction, Vij(r), we note that our theory not only replaces V R

i j (r), as
an approximation, by VHC(r) A (r) but also imposes a condition, “that two
WPs of HC particles should not share any point r in configurational space”,
—equivalent to assuming the presence of a repulsion of finite range, ra = /2;
it appears that the WP manifestation of particle extends the range of the influ-
ence of VHC(r) from ra = s to ra = /2 when /2 > s . This repulsion is nothing
but the zero point repulsion58 which can be derived as the first d derivative of

0 = h2/8md2 representing the G-state energy of a particle. Evidently, A in
VHC(r) A (r) should be proportional to h2/8md2.

Further, since V R
i j (r) in most SIB falls faster (in LHE-4 it varies as r- 12) than

the zero-point repulsion, varying as r- 2, the latter would dominate
V R

i j (r) particularly for all r > s and /2 and this observation agrees with the
experimental facts that: (i ) LHE-4 does not solidify due to the operation of
zero-point repulsion even at T = 0 unless an external pressure of » 25 atm is ap-
plied, and (ii) it exhibits volume expansion with falling T around T 1. We also
note that our condition /2 d identifies d as the upper limit of the WP size

/2 (the key aspect of our theory) and d is decided by Vij(r) without any ap-
proximation. These observations, clearly, prove that our theory accounts for
the V R

i j (r) and V A
i j (r ) components of Vij(r) close to their real effect.

2.8: Why (q, -q) Pair Condensation

The phenomenon of superfluidity/superconductivity of a fermionic system
is attributed to the condensation of Cooper pairs of fermions for a reason that
the Pauli exclusion principle forbids two identical fermions from occupying
single energy state, while any number of these pairs presumed to behave like
bosons can do so. Because Pauli exclusion does not apply to bosons, conven-
tional theorists found no difficulty in assuming the condensation of macro-
scopically large number of bosons into a single particle state of p = 0 as their
main theme. However, this assumption ignores the fact that in the same way
that two fermions do not occupy same point in k-space, two HC particles do
not occupy the same point in r-space. This is particularly important because
the requirement of antisymmetry of two fermion wave function, a(1, 2) =



[vk¢ (r1) · vk¢ ¢ (r2) - vk¢ (r2) · vk ¢ ¢ (r1)] for their exchange, makes a(1, 2) vanish
not only for k = k but also for r1 = r2. Evidently, if (1, 2) of two HC parti-
cles is subjected to a condition that it should vanish for r1 = r2, (1, 2) has to
be identically antisymmetric and would, obviously, vanish also for k = k .
This implies that two HC quantum particles in r-space behave like two fermi-
ons behave in k-space and concludes that two HC particles (excluded to have r1

= r2) can not have k = k , particularly, in a state of their wavemechanical su-
perposition (i.e., a quantum state of > d). Note that the inference would be
valid not only for particles of s » 0 (i.e., particles interacting through -func-
tion repulsion) but also for 4He type atoms because finite size HC repulsion
becomes equivalent to -function repulsion for particles of /2 > s 55. Howev-
er, we also note that there is a difference in fermi behavior due to HC nature
and that due to half integer spin; while the former excludes every particle from
having q < /d (applies identically to HC bosons and HC fermions), the latter
excludes two particles (applies to fermions only) from having equal K (Equa-
tion 10). Evidently, this excludes the possibility of nonzero np= 0(T) which has
also been shown to be inconsistent with excluded volume condition of HC par-
ticles51.

As such, like Pauli exclusion provides effective repulsion to keep two fermi-
ons apart4, the volume exclusion condition applicable to HC quantum parti-
cles and WP manifestation of quantum particles render such repulsion to keep
their WPs at r /2; experimentally observed volume expansion of LHE-4
with decreasing T near T 1 corroborates this fact. Evidently, there is no doubt
that superfluidity of LHE-4 type SIB originates from the condensation of (q,- q)
pairs. The binding between two particles originates from their inherent inter-
atomic attraction and this has been discussed in detail in Section 5.4.

3.0: Quantum Correlation Potential

The inter-particle quantum correlation potential (QCP) originating from the
wave nature of particles can be obtained59 by comparing the partition function
(under the quantum limits of the system), Zq= nexp(- En/kBT) · | n(S)|2 and its
classical equivalent, Zc = nexp(- En/kBT) · exp(- Un/kBT ). Here n(S) is given
by Equation 15. The procedure is justified because our theory describes the
system by symmetrized plane waves and our assumption that only one particle
occupies a single AR of these SMWs screens out the HC potential. Simplify-
ing Un, one easily finds that pairwise QCP has two components. The
U s

i j pertaining to k motion controls the = kr position of a particle and we have

U s
i j = - kB T0 ln[2 sin2( / 2)], (16)

where T has been replaced by T0 because T equivalent of k motion energy at all
T T is T0.

U s
i j has its minimum value (- kBT0ln2) at = (2n + 1) and maximum value

(= ¥ ) at = 2n occuring periodically at = 2n (with n = 1,2,3,...). Since U s
i j
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always increases for any small change in at its minimum value, as

1
2

C( )2 =
1
4

kBT0( )2 with force constant C =
1
2

kB T0, (17)

and particles experience a force = - C which tries to maintain = 0 and the
order of particles in -space is sustained. Since U s

i j is not a real interaction, in
general, it cannot manipulate d. The -space order is, therefore, achieved by
driving all q towards q0. In the S-phase, however, the interdependence of r and
q through = 2qr = 2n makes Vij(r) depend also on and q positions of parti-
cles and this renders (i ) a new type of inter-particle correlation known as quan-
tum correlation (or -correlation defined by g( ), cf. Equation 5) which exists
only in S-phase and (ii) a kind of additional potential energy (self energy, cf.
Section 5.4.4) that depends on q. As such we find that unique properties of the
S-phase are due to quantum correlations (g( )) rather than the normal inter-
particle correlations (g(r)) (existing in both N- and S-phases) originating from
Vij(r).

The second component pertaining to K motion is expressed by

Ui j = - kB T ln[1 + exp( - 2 | R ¢ - R ¢ ¢ |2/ l ¢ 2
T )], (18)

with l ¢
T = h/ (2 (4m)kBT )1/ 2 which is, obviously, identical to the expression

obtained for non-interacting bosons59,60. Uij may be seen as the origin of the
force that facilitates BEC in the state of K = 0 by driving particles in K space to-
wards K = 0 where it has its minimum value (- kBT · ln2).

4.0: The Transition

What follows from Section 2.6, the lower bound of Tc is T0 (the T equivalent
of 0 or that of = 2d). This gives Tc = T0 = h2/8 mkBd2 by using T = h/
(2 mkBT)1/2. To reveal the real T0 = T , we note that with T moving below
T particles not only have q = q0, but also start attaining K = 0. Evidently, the -
transition follows two processes simultaneously: (i) an order-disorder of parti-
cles in -space rendering q = q0 and (ii) the BEC of particles (as SMW pairs)
driving them towards K = 0. In view of these aspects it is evident that -transi-
tion is a second order transition. This also gives

Tl = T0 +
1
4

TBEC =
h2

8 mkB

"
1
d2

+

³
N

2.61V

´2/ 3
#

, (19a)

where TBEC is usual BEC temperature5. The factor of 1/4 appears because the
plane wave K motion of a particle has h̄2K2/2(4m) energy and TBEC varies as
1/m. The sharpness of the transition is well evident from its condition = 2d.
We analyze the nature of transition again in Appendix A by identifying its OP
and the relevant part of the free energy F.

While particles in our system can be assumed, to a good approximation, to
represent HC particles moving freely on a surface of constant - V0, the fact that



two neighboring particles do experience inter-particle interaction during their
relative motion needs cognizance for explaining certain experimental observa-
tions such as pressure (P) dependence of T . Since a relation obtained from a
model based on free particle picture can be modified for the role of inter-parti-
cle interactions by replacing m by m*, defining the effective mass of a particle,
we can obtain more accurate value of T from,

Tl =
h2

8 m * kB

"
1
d2

+

³
N

2.61V

´2/ 3
#

, (19b)

Evidently, d, V and m* are three quantities which may change with increasing
P. While T is expected to increase with increasing P for the usual decrease in
the values of d and V, however, T may show a reverse change if m* increases
with P. In this context we note that m* for 4He atoms in LHE-4 should increase
with P for an obvious increase in the strength of inter-particle attraction with
increasing P. Evidently, Equation 19b can explain the P dependence of T of
LHE-4.

5.0: Properties of S-Phase

5.1: The Method of Derivation

It may be mentioned that the usual method of finding different properties of
a normal fluid by using their relations with radial distribution factor g(r) can
not be used to derive the properties of the LT phase clearly because this phase
is dominated by -correlations g( ). We note that g( ) represents momentum
correlations (g(q)) when r-space configuration remains fixed or simply r-cor-
relations (g(r)) when all particles keep fixed q because the system maintains

= 2qr = 2n . The use of only g(r) in deriving the properties of the system
would, obviously, ignore q-correlations.

In view of this inference, we determined the energy of nth quantum state En

= H(N) (cf. Equation 12) by using the standard method of finding the expec-
tation value of a physical operator. We also determined the G-state energy
E0 (cf. Equation 14) by usual method of energy minimisation. Within the ap-
proximation that particles of the system move as hard balls on a sheet of con-
stant negative potential (- V0) (cf. Section 2.1) and VHC(r) A (r), Equation 14
renders very accurate E0. However, En (Equation 12) representing higher ener-
gy state of K 0, needs to be reorganized for the inter-particle phase correla-
tions leading to collective motions of particles identified by wave vector Q. To
find the energy dispersion (E(Q)) relation for these motions and related prop-
erties, we propose to use quantum correlation potential (QCP), U s

i j (Equation
16, Section 3.0) because it expresses exactly the modulation of the particle po-
sitions by n in r- and -spaces. In this context we are guided by the interpreta-
tion and significance of QCP as concluded by Uhlenbeck and Gropper60. Ac-
cordingly, QCP provides an alternative way of expressing inter-particle
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correlations and for this purpose one has to simply introduce this potential and
treat the particles classically. As such QCP provides an alternative method of
plugging in our wave function n(S) (Equation 15) with different properties of
the system. The fact that QCP also provides important information such as per
particle phase correlation energy (= - kBT0 ln2), the inter-particle force con-
stant (cf. Equation 17), etc., which other methods can not provide, is an addi-
tional advantage of its use. As such we derive all important properties of the
system in three steps.

(i ) In the first step we use QCP to find the , q, and r-space configurations
of the G-state of the system defined by

= 2n , q0 = / d , á r ñ = d (20)

that serve as our key results followed from55 and Section 3.0. Evidently,
the system is a close packed arrangement of WPs. The packing leaves no
freedom for particles to move across each other and they move in the
order of their locations maintaining = 2n . We use the configuration
Equation 20 to find the E(Q) in a manner, one determines excitation spec-
trum of crystals. In this context we also give due importance to possible
changes in the configuration of the system under the influence of an exci-
tation as well as in the nature of excited state motions at different Q.

(ii) In the second step we recall the inter-particle attraction which was re-
placed, to start with, by a constant negative potential - V0 and use it as a
perturbation on the SMW configuration of HC particles. This renders
what we call collective binding of all particles or the energy gap between
S and N states of the system, which explains superfluidity and related
properties (cf. Section 5.5–5.9).

(iii) Finally we use our results, such as = 2n , the state function (Equa-
tions 10 and 11), and the details of U s

i j to find relations for quantized cir-
culation, ODLRO, and logarithmic singularity of specific heat and relat-
ed properties.

5.2: Thermal Excitations

5.2.1: Approach using orderly arrangement of atoms. From the G-state con-
figuration (cf. Equation 20), we note that the system represents a close packed
arrangement of WPs where particles are restored by U s

i j at = kr = 2n , we
can visualize waves of -oscillations. To reveal their frequency dispersion,

(Q), we consider a linear chain of atoms and only nearest neighbor interac-
tions as the responsible forces. We have

v (Q) =
p

(4C)/ | sin(Qd / 2)| , (21)



where Q is the wave vector and is the measure of inertia for motion. How-
ever, -oscillations can appear as the oscillations of r and q because = 2q r
+ 2 qr. We have phonons when q = q0, and omons (a new kind of quantum
quasi-particle representing a phononlike wave of the oscillations of momen-
tum) when r = d. We note that a system like liquid 4He is expected to exhibit (i)
no transverse mode because the shear forces between particles are negligibly
small, and (ii) only one branch of longitudinal mode because the system is
isotropic. Evidently, r(Q) of phonons can be represented, to a good approxi-
mation, by the dispersion of the elastic waves in a chain of identical atoms and
it can be obtained from Equation 21 by replacing and C by m and C, respec-
tively. We have

C = 4 2C/ d2 = 2 2kB T0/ d2 = h2/ 4md4. (22)

However, for better accuracy d and C should, respectively, be considered de-
scending and ascending functions of Q because increase in the energy of parti-
cles affected by an excitation reduces WP size and this renders a decrease in
d and an increase in C. As such the phonon energy, Eph(Q), can be obtained
from

Eph(Q) = h̄vr (Q) = h̄
p

4C(Q)/ m | sin(Qd(Q)/ 2)| . (23)

The accuracy of this relation is also evident from the fact that the Q depen-
dence of C and d not only explains the experimentally observed Eph(Q) of He-
II but also accounts for its anomalous nature at low Q (cf. Section 7.0). This as-
pect has been studied in great detail in61,62. However, since d /< s, d(Q) and
C(Q) are bound to become Q independent for Q > / s and the maximum in
Eph(Q) (i.e., the position of so called maxon) should fall at Qmax = / s and
Eph(Q) over the range Q > / s and <2 /d should follow

Eph(Q) = h̄vr (Q) = h̄
p

4C(Qmax)/ m| sin(Qs/ 2)| . (24)

We note that phononlike dispersion can be expected till the excitation wave-
length > d (i.e., Q < 2 /d). The spectrum for < s is expected to follow

Esp(Q) = h̄2 Q2/ 2m F , (25)

a kind of single particle dispersion because the momentum and energy of the
excitation would be carried by a single particle only; here mF represents a kind
of mass factor that measures the effect of quantum correlation in the (q, - q)
pair.

The transition of E(Q ) from Eph(Q) to Esp(Q ) would, obviously, take place
over the range, 2 /d < Q < 2 / s , before the Eph(Q) (Equation 24) meets its zero
value at 2 / s . This implies that E(Q ) has to have its minimum (the so called
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roton minimum) at a Q = Qmin near the mid-point of Q = 2 /d and Q = 2 / s . To
a good approximation this gives

Qmin »
h

d
+

s

i
. (26)

This inference can be easily understood from Figure 1 where we depict phonon
dispersion of two chains of 4He atoms: Chain-A is defined by largest possible d
= 3.5787Å obtained from density (= 0.145 gm/cc) given in reference 1 and
smallest possible C = 3.1681 dyne/cm obtained from Equation 22, while
Chain-B defined by shortest possible d (i.e., s = 2.8303Å) fixed from observed
maxon position Qmax (= / s = 1.11Å- 1) and highest possible C = 5.53 dyne/cm
fixed for obtaining experimentally observed maxon energy (= 13.92 K) for He-
II through Equation 24. It appears (cf. Figure 1) that the conditions of the sys-
tem in the roton region, 2 /d < Q < 2 / s , are such that we simultaneously have
a phonon of +ve group velocity (vg) on Curve-A as well as a phonon of - vg on
Curve-B. In other words, the roton is the superposition of two phonons of op-
posite vg coexisting in the system. This picture of rotons resembles greatly that

Fig. 1. Phonon dispersions of linear chains A (Curve-A) and B (Curve-B) of 4He atoms in a close
packed arrangement of their WPs in He-II and theoretical E(Q) (Solid Line Curve) of He-
II obtained by using Equations 23–27. The dotted curve beyond E(Q) 18 K shows the
direction of E(Q) if the resonance interaction with multiphonon modes were absent. For
details see Sections 5.2 and 7.0.



suggested by Feynman63. Further, since the Qmin falls close to the cross point of
Curve-A and Curve-B, we have

Erot(Q ¢ ) » Eph(Q ¢ )|curve- A + Eph(Q ¢ )|curve- B (27a)

or

Erot(Q ¢ ) » Eph(Q ¢ - 2 / d)|curve- A + Eph(Q ¢ )|curve- B (27b)

and

Erot(Qmin) » 2Eph(Qmin - 2 / d), (27c)

where we have Q = Q (> 2 /d). To obtain Equations 27b and 27c we use the
facts that (i ) Eph(Q ) curve-A = Eph(Q - 2 /d) curve-A and (ii) the real dispersion of
phonons of Q - 2 /d neither follows curve-A nor Curve-B but the Eph(Q -
2 /d) curve, slowly drifting away from Curve-A to Curve-B (cf. Figure 1).

Evidently, Equations 23–27 obtained for the S-phase represent a Landau
type spectrum (for example as shown for He-II by the solid curve in Figure 1).
Using d(Q), C(Q ) and mF as adjustable parameters we can easily obtain a spec-
trum matching with experiment for He-II (cf. Section 7.0). Using Equation 22
in Equation 23, we also have

vp = vg = Ö h/ 2md , (28)

for low Q modes; here vp represents phase velocity of phonons.
Finally, we note that the equation of motion of rs (the r of sth atom), i.e.,

¶ 2
t rs = -

1

4
v2

0[2rs - rs - 1 - rs+ 1],

transforms into a similar equation for ps = h̄qs by operating m t. This reveals
r(Q) = q(Q) (the omon dispersion frequency). As concluded in Section

5.4.4, an omon is an anti-phonon quantum quasi-particle.
5.2.2.: Feynman’s approach. Defining an excited state of the system by =

i f(ri) and the G-state by , Feynman53,63 showed that the excited state energy
is minimum for f(ri) = exp(ik · ri). He obtained

E(Q)Feyn =
h̄2 Q2

2m S(Q)
, (29)

with S(Q) = structure factor of the system. However, for He-II, this relation
renders an E(Q) which is found to be about two times the experimental value.
Introducing back flow effects Feynman and Cohen64 later obtained results of
better agreement with experiments but with considerable discrepancy at high-
er Q. In this section we apply Feynman’s approach to our (q, - q) configuration
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of particles. In this context we note that under the impact of an excitation a
SMW pair in the G-state configuration of (q0, - q0) and K = 0, expressed by U-

(q0) = U- (Equation 6, with k = 2q0 and K = 0) moves to a new configuration (q0

+ q, - q0 + q) described by

U - (q0, q) = U - (q0) exp(iQ · R) exp( - i (Q)t / h̄), (30)

with 2 q = Q, which means that the impulse changes in the CM momentum
and energy of both particles and its impact should be identified by Q not by

q. Equation 30 further shows that f(R) = exp(iQ · R) is the real form of f which
renders = i exp(iQ · Ri) . Using these facts and recasting the relation,
- (h̄2/ 2m) 2 f (R) =

R
g(R - R ¢ ) f (R ¢ )d3 R ¢ (Equation 11.25 of Feynman63,

p. 329–330), for ith particle we find - (h̄2/ 8m) 2
i f (R) = i (Q)S(Q) f (R) ;

note that our single particle energy operator is - (h̄2/ 8m) 2
i . This renders

(h̄2 Q2/ 8m) = i (Q)S(Q) . Adding this relation to a similar relation for jth par-
ticle of the pair gives

E (Q) = i (Q) + j (Q) =
h̄2 Q2

4m S(Q)
=

1

2
E (Q)Feyn, (31)

which naturally explains E(Q)expt of He-II. While Equation 31, as a single rela-
tion, can give us the full E(Q ), our five equations (23–27) provide a better un-
derstanding of the microscopic details of the motions responsible for its differ-
ent parts.

Since Equations 23–27 have been derived by using the condition that parti-
cles in the G-state of the system are orderly placed in configurational as well
as in phase space, these may appear to be inapplicable to account for the
E(Q ) of the N-phase, where particles have random distribution in phase space.
However, in view of the discussion of Section 6.0 dealing with the thermody-
namics of the N-phase, the system seems to represent nearly a close packed
arrangement of WPs but without collective binding (cf. Section 5.4) and phase
coherence. Consequently, the excitation spectra of S- and N-phases are not ex-
pected to differ significantly, particularly, at low Q and T near T ; of course, in
the absence of the phase correlation among the particles in N-phase, the ener-
gy width ( E(Q)) of excitations should increase significantly. This is found to
agree with the experiments on He-I. Further, since the experimental S(Q) con-
tains the information about the configurational arrangement of particles in the
system, Equation 31 should provide E(Q) of its both phases with equal degree
of accuracy.

5.3: Two Fluid Behavior

Since 0
N(q0) and e

N(K) (cf. Equation 15) deal separately with q and K mo-
tions of particles they represent two different components in the system. The
component 0

N(q0), representing particles in their G-state, obviously has zero
entropy (S = 0); this also has = 0 because particles are constrained to move in



the order of their locations (cf., Section 5.1). The excitations are the effects
that can propagate from one end of the system to the other against the closely
packed WPs in the background. They, obviously, form a kind of gas (as envis-
aged by Landau14) that accounts for the total S and other thermal properties of
the system. They also render a 0 because their effects can lead to frictional
movement of particles. As such, 0

N(q0) has the basic properties of S-fluid,
while e

N(K) has those of N-fluid. Interestingly since all particles participate in
0
N(q0) as well as e

N(K), none of them can be labeled as N or S particles. All
these aspects justify the use of inertial mass density associated with excita-
tions to obtain normal fluid density n(T) and superfluid density s(T) = (T) -

n(T ) through well known relations (cf. p. 137 of reference 1) and vindicate
two fluid theory of Landau14. It may, finally, be noted that this theory also pro-
vides new relations for obtaining s(T) and n(T) (cf. Section 5.5.4).

5.4: Energy Gap and Self Energy

5.4.1: Perturbative effect of attraction on SMW pair. With T moving below
T , the WPs of neighboring particles having increased size (>d) tend to mutual-
ly overlap and push the particles against inter-particle attraction. This overlap
and VA(rij) attraction combine to perturb (K = 0, q0 state and its energy 0. The
attraction being a function of r can not affect CM motion. However, it can per-
turb the relative motion of the SMW pair. The energy of perturbed states of the
pair can be determined by diagonalising the (2 × 2) energy matrix defined by
E11 = E22 = 0 and E12 = E21 = v where 0 is q motion energy of each particle in
the pair and v is the expectation value of the attraction. Note that particles in
the pair have equal q (=q0). Diagonalisation of the matrix renders two states of
energy 0 ± |v|. |v| could better be replaced by |v(T)| as the overlap may depend
on T. The state of lower energy ( 0 - |v(T )| ) can be considered to represent a
kind of bonding (or paired) state while that of 0 + |v(T )| an antibonding (or un-
paired) state. This follows the well established standard method (Molecular
Orbital Theory65) applied to a similar case in which two identical atomic or-
bitals form two molecular orbitals of bonding and anti-bonding nature. The
pair is expected to be in bonding state provided the two WPs continue to have
their overlap.

5.4.2: Perturbation effect on a state of N-particle. Starting from the N-body
microscopic quantum hamiltonian, H(N) (Equation 1) and following the dis-
cussion of Section 5.3, we find that the states of N- and S-components of the
fluid are, respectively, described by 

H (R) = -
h̄2

8m

NX

i

2
Ri

(32a)

and

H (r) = -
h̄2

2m

NX

i

2
ri

+
X

i< j

£
V R

i j (r) + V A
i j (r)

¤
. (32b)
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We note that H(R) + H(r) defines H(N) (Equation 1). Since we have V R
i j (r) ( »

VHC(r) A (rij)) and for the SMW pair configuration we have shown55 that
A (rij) = 0, we are, naturally, left with only V A

i j (r) as the significant part of
H(r). One may easily find that the basic role of V A

i j (r) is to decide the binding
energy per particle (- V0) in N- as well as S-phases and to keep particles con-
fined to volume V. However, as explained below, V A

i j (r) in S-phase, where the
WPs of neighboring particles tend to overlap, renders an additional fall in the
energy of the system.

Since V A
i j (r) perturbs only the S-state where each particle is represented only

by its q motion of energy 0, we can exclude thermal distribution of particles
over the possible states of K motion and apply the perturbation theory of de-
generate state. We construct a N × N matrix of the expectation value of
H(r) using (r) = sin(q0 · r)exp(- i 0t/ h̄ ) as a basis that represents a WP in S-
state. We have H(r)mn = 0 for m = n, and H(r)mn = VA(r)mn for m n with
VA(r)mn having non-zero value only if m and n refer to two neighboring WPs.
Note that each WP has 6–12 (depending on the symmetry of their assumed
spatial arrangement) nearest neighbor WPs. The diagonalisation of this matrix
renders N/2 energy levels with energy > N 0(T ) (anti-bonding states) and N/2
energy levels with energy < N 0(T ) (bonding states). The system obviously
falls in the lowest possible energy state, i.e., a bonding state. As the perturba-
tive effect of V A

i j (r) lowers 0 of each particle identically, all particles in the
system fall in bonding state simultaneously and acquire a kind of collective
binding. Using the coherence property of the system evident from = 2n we
find that the effective binding per particle becomes much larger than KBT66,
even when the real binding per particle is very small. This ensures the stability
of the bonding state in spite of its source being an energetically weak effect.
Further since the WPs in the system at T T , always tend to acquire increased
size beyond its value at T (i.e., /2 = d ), they can not have a size <d to come
out of the bonding. This again ensures the stability of bonding state. The effect
can also be understood in terms of Feynman’s useful theorem63, p. 273 used to ex-
plain stability of a superconducting state.

5.4.3: Energy gap. In view of the above discussion, we note that the q mo-
tion energy of the system falls from N 0(T ) to a new value N 0(T) = N 0(T ) -
N|vN(T)| = N 0(T ) - Eg(T) when the system is cooled below T . This gives a
simple method of finding |vN(T)| (a measure of the net perturbative effect of at-
traction) through

Eg(T ) = N |vN (T )| = N [ 0(Tl ) - 0(T )] » Nh2(dT - d l )/ 4md3
l . (33)

Following this analysis, Eg(T) can be identified as: (i) the collective binding
among all particles rendering the system to become a kind of single molecule67

and (ii) an energy gap between the S and N phases in a sense that S becomes N
phase if Eg(T) energy is supplied from outside. Although, our (q, - q) pair ap-
pears to be similar to a Cooper pair68, it differs from the latter for the facts that



(i ) the binding of two bosons is a consequence of their inherent attraction com-
bined with QCP (cf. Section 3.0) and (ii) each particle of the pair represents the
(q, - q ) pair. The system retains its fluidity because |vN(T )| 0, which also im-
plies that the binding is a weak effect.

5.4.4: Self energy of particles. When the system moves to lower energy state
the WPs have increased size depending on |vN(T )|. This forces the system to ex-
pand with decreasing T which is corroborated by experimentally observed neg-
ative volume expansion coefficient in case of LHE-4. The expansion forced
against inter-atomic attraction needs energy which should be managed from
within the system. In this context we note that even in its S-phase the system
has a small number N*(T) of thermally excited particles (devoid of quantum
correlation for their excitation wavelength < s ). With fall in T below T , the
number of these particles decreases from N*(T ) to N*(T) and in this process
q motion energy decreases additionally by

(T ) = kB T0 ln 2[N * (Tl ) - N * (T )], (34a)

with

N * (T ) =
V

4 2

µ
2m

h̄2

¶3/ 2 Z ¥

c

µ
exp

³
- 0

kB T

´
- 1

¶ - 1

Ö d , (34b)

where c = h̄2Q2
c/2m (with Qc » 2 / s ) represents such an energy that an atom of

> c has no quantum correlation with its neighbors. Note that Equation 34b
gives an approximate N*(T), since in writing this relation we used a free parti-
cle dispersion, = h̄2Q2/2m, which is valid only to a good approximation. The
fact that (T) (Equation 34a) and Eg(T) (Equation 33) closely satisfy (T) =
Eg(T) has been observed for He-II for all T < T (cf. Section 7.0). As such the

(T) energy released from quantum correlations becomes available for the
expansion of the system wherein particles are pushed to higher potential by an
amount, Vs(T) = (T). Naturally, Vs(T) represents a kind of strain in the
system and it can be termed as self energy of the particles.

Since Vs(T) depends on the size of WPs and hence on q values, it serves as
a source of OMONs (collective oscillations of q). It can also be recognized as
the energy of omon field. The fact that Vs(T) increases with decreasing T im-
plies that omon field intensity increases when phonon field intensity decreas-
es. Evidently, Vs(T) could either be considered as the energy of phonons ab-
sorbed by the system or the omon be identified as an anti-phonon quantum
quasi-particle. Since Vs(T) attains its maximum value at T = 0, it serves as a
source of energy for collective motions even at T = 0.

5.4.5: Bound pair exists in S-phase only. Since the average WP size in the
system at T > T is smaller than d, the WPs in their spatial arrangement are not
forced to have any overlap, which implies vN(T ) = 0. However, the WPs in the
system below T tend to have a size larger than d by forcing the system to ex-
pand. This forces each WP to overlap with its neighboring WPs and we have
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vN(T ) 0. Evidently, bound (q, - q) pairs exist only in S-phase and not in N-
phase.

It should be noted that our bound pair represents two particles bound in -
space (i.e., locked at = 2n ). While the impact this binding can be observed
in r-space due to = kr, however, this does not imply that two particles in the
system form He2 type diatomic molecule; the entire system assumes a state
where particles interact with their neighbors identically. We use the term
bound pair because the SMW quantum state of two particles is a result of the
superposition of two plane waves of q, and - q momenta and the energy of such
a state in the S-phase is lower than that in N-phase.

5.5: Energy Gap and its Consequences

In what follows from Appendix A, F(K) accounts for the routine thermody-
namic properties, while Eg(T) = N 0 - F(q) (cf. Equation A-2) forms an impor-
tant component of F needed to explain superfluidity and related properties. In
the following we, therefore, study all these aspects using Eg(T).

5.5.1: Superfluidity and related properties. If two heads X and Y in the sys-
tem have small T and P (pressure) differences, the equation of state is Eg(X) =
Eg(Y) + S T - V P. Using Eg(X) = Eg(Y ) for equilibrium, we get

S T = V P (35)

This reveals that (i) the system should exhibit thermo-mechanical and mechano-
caloric effects, and (ii) the measurement of by capillary flow method per-
formed under the condition T = 0 and of thermal conductivity ( ) determined
under P = 0 should reveal = 0 and »  ¥ , respectively. As such, the S-phase is
expected to be a superfluid of infinitely high .

Our theory also provides a good understanding of the above inferred behav-
ior from a phenomenological point of view. In this context we note the follow-
ing: (i) A close packed arrangement of WPs in a fluid-like system can have no
vacant site particularly because two neighboring particles experience zero
point repulsion. The system is, naturally, expected to have large . (ii) The
fact that the system can not have thermal convection currents for its large

and close packing of particles, explains why He-II does not boil like He-I.
(iii) Since particles in S-phase can move only in the order of their locations (cf.
Section 5.1), they cease to have relative motion, particularly during their lin-
ear motion and we have vanishingly small . In the rotating fluid, however,
particles moving on the neighboring concentric circular paths have relative ve-
locity producing quantized vortices as a source of natural viscous behavior.
This explains both viscosity and rotation paradoxes5. As such, the loss of vis-
cosity in linear motion is not due to any loss of viscous forces among the parti-
cles; rather it is the property of the S-phase configuration (i.e., close packed
arrangement of WPs) originating mainly from the wave nature of particles.

5.5.2: Critical velocities and stability of S-phase. Using the same argument,



which gave us Equation 30, we find that the state function n(q0) of the S-
phase changes to *

n(q0) when the system flows with velocity vf = h̄ q/m. We
have

*
n (q0) = n(q0) exp

µ

iK ·
NX

i

Ri

¶

exp[- i [N ( 0 + (K )) - Eg(T )]t / h̄],

(36)

with 2 q = K. This reveals that the S-state function remains stable against
such flow unless the flow energy Nmvf

2/2 = N (K) overtakes the collective
binding energy Eg(T) of the system. This explains the origin for critical veloci-
ties. Equating Eg(T) and flow energy, N.mv f

2/2 for vf = vc, we get upper bound of
critical velocity, vc, for which the S-phase becomes N-phase. We have

vc(T ) =
p

[2Eg(T )/ N m]. (37)

Avc < vc(T), at which the superfluid may show signs of viscous behavior, can be
expected due to creation of quantized vortices. However, this cause would not
destroy superfluidity unless energy of all vortices produced in the system ex-
ceeds Eg(T ).

5.5.3: Coherence length. The main factors responsible for the coherence of
the S-phase are the locking of particles at = 2n (cf. Equation 20) and their
collective binding Eg(T). Naturally, the coherence length, (not to be confused
with healing length5), can be obtained from

(T ) = 1/ mvc(T ) = h
p

[N / 2m Eg(T )]. (38)

5.5.4: Superfluid density. Correlating the superfluid density, s, as the order
parameter of the transition, with Eg(T) we find a new relation

s (T ) = [Eg(T )/ Eg(0)] (T ) (39)

to determine s(T ) and normal density, s(T) = (T) - s(T). Evidently, vc(T ),
x (T ), and s(T) can be obtained if we know Eg(T) (Equation 33), which requires

(T) values. Finally it may be mentioned that Eg(T) as well as s(T ) would van-
ish at the boundaries of the system, since S-state function vanishes there.

5.5.5: Superfluid velocity. Concentrating only on the time independent part,
Equation 36 can be arranged as

*
n (q0) = n(q0) exp[i S(R)], (40a)

with

S(R) = K ·
NX

i

Ri (40b)

and
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vs =
h̄

2m
Rj S(R) =

h̄ q
m

, (40c)

which follows the fact that Rj
S(R) renders the momentum of the pair (not of a

single particle). Evidently Equation 40c shows the interrelationship of the su-
perfluid velocity vs and the phase S(R) of our S-state wave function as expected
(cf. Section 2.3 of reference 8).

5.6: Quantized Vortices

Using the symmetry property of a state of bosons, Feynman53,63 showed that
the circulation, ! , of the velocity field should be quantized, i.e., ! = nh/m with
n = 1,2,3,... However, Wilks1 has rightly pointed out that this account does not
explain the fact that He-I, to which Feynman’s argument applies equally well,
does not exhibit quantized vortices. Using Equation 40c for the superfluid ve-
locity vs, we find that

=
X

i

vs(i) · ri =
h̄

m

X

i

qi · ri =
nh

m
, (41)

where we used the condition that i qi × ri = 2n , which presumes that the
relative configuration of particles during their reshuffle on a closed path main-
tain phase correlation. However, we find the particles of S-phase only have
their -positions locked at = 2n and for this reason we observe quantized
vortices in this phase. On the other hand particles in N-phase having random
distribution ( 2n ) in -space do not sustain phase correlation and we do
not observe quantized vortices.

5.7: Single Particle Density Matrix and ODLRO

Using Equations 15 and 10, we can have the single particle density matrix,

(R * - R) =

µ
NK= 0(T * )

V
+

N

l ¢ 3
T

exp

µ
- 2

|R * - R|2

l ¢ 2
T

¶¶

´
³

2
V

sin2

µ
(r ¢ ¢ - r ¢ )

d

¶´
, (42a)

with

nK = 0(T * ) =
NK= 0(T * )

N
=

"

1.0 -

³
T *

T *
l

´3/ 2
#

=

"

1.0 -

³
T - T0

Tl - T0

´3/ 2
#

,

(42b)

where we used (i ) q0 × (r ²  - r )* - 2n + q0 × (r ² - r ), (ii) a renormalized T scale
by defining T* = T - T0 since T* = 0 represents a state where K motions of the
system are expected to freeze at zero level and (iii) the standard relation,



nK = 0(T ) =
NK = 0(T )

N
=

"

1 -
³

T

Tl

´3/ 2
#

(42c)

available from the theory of BEC of non-interacting bosons5. Use of Equation
42c can be justified since plane wave K motions in the system represent a kind
of non-interacting bosons. While the term in big (..) of Equation 42a represents
the variation of density over a single AR, NK= 0(T*) stands for the number of
particles condensed to the state of K = 0 and q = /d; l ¢

T = h/ [2 (4m)kBT ]1/ 2

represents thermal wavelength attributed to K motions. We note that under the
limit |R* - R| tends to ¥ , the “one particle density matrix” ( (R* - R)) has
nonzero value (NK= 0(T)/V) for T < T and zero for T T since NK= 0(T*) is

0 for T < T and 0 for T T . Evidently, our theory satisfies the criterion of
Penrose and Onsager35 for the occurrence of BEC in the G-state of the system
defined by K = 0 and q = /d and agrees with the idea of ODLRO, spontaneous
symmetry breaking and phase coherence advanced, respectively, by Yang37,
Goldstone69 and Anderson70.

5.8: Logarithmic Singularity of Specific Heat

The specific heat Cp(T) of the system is expected to show usual cusp at T if
BEC of SMW pairs is considered as the only mechanism of the transition. But
our system at its -point also has an onset of ordering of particles in phase
space rendering widely different changes in -position of different particles.
To determine the corresponding change in energy we, however, assume for
simplicity that of the N*(T ) uncorrelated particles in their excited states,
N make significant contribution to and they move from their = (2n ±

) at T + (just above T ) to = (2n + 1) at T - (just below T ). This gives

= - N l kB T0

µ
ln 2 sin2

³
2n ± l

2

´
- ln 2

¶
. (43)

Following the theories71 of critical phenomenon we may define

l = l (0)| |
£
1 + a2| |2 + a3| |3

¤
(44)

with z = (T - T )/T . To a good approximation we have

= - N

³
T - Tl

Tl

´
kB T0 ln

³
l (0)| |

2

´2

(45)

by using = (0)| z | n and N = N(T - T )/T ; the latter expression is so cho-
sen to ensure that does not diverge at T and it decreases with decreasing
T through T . Equation 43 gives

Cp(T » Tl ) » -
N

Tl
kB T0[2 ln | | + ln( l (0)2) - ln 4 + 2 ]. (46)
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5.9: S-State and its Similarity with Lasers

We note that the system below T defines a 3-D network of SMWs extending
from its one end to another without any discontinuity. In lasers too these are
the standing waves of electromagnetic field that modulate the probability of
finding a photon at a chosen phase point. The basic difference between the two
lies in the number of bosons in a single AR. In the case of lasers this could be
any number since photons are non-interacting particles but for a SIB like
4He or 87Rb one AR can have only one atom.

6.0: Thermodynamic Behavior at T > T

Following Equation 4, the energy of a particle in SMW configuration is
given by

E = (K ) + (k) =
h̄2 K 2

8m
+

h̄2k2

8m
. (47a)

The possible values of E range between its G-state energy 0 = h2/8md2 = E (for
K = 0 and k = 2 /d) and 1 and this range is available if we write

E =
h̄2 K 2

8m
+ 0, (47b)

where K varies between 0 and 1 . Using Equation 47b in the starting expres-
sions of the standard theory of BEC72, we have

PV

kB T
= -

X

(K )

ln[1 - z exp( - [ (K ) + 0])] (48)

and

N =
X

(K )

1
z - 1 exp( [ (K ) + 0]) - 1

, (49)

with = 1/kBT and fugacity

z = exp( µ) (µ = chemical potential) (50)

Following the steps of the standard theory of BEC72 and by redefining the
fugacity by

z = z · exp(- 0) = exp[ (µ - 0)] (51)

we easily have

P

kBT
= -

2 (8mkB T )3/ 2

h3

Z ¥

0
x1/ 2 ln(1 - z ¢ e - x )dx =

1
l 3

g5/ 2(z ¢ ), (52)

and



N - N0

V
=

2 (8mkBT )3/ 2

h3

Z ¥

0

x1/ 2dx

z ¢ - 1ex - 1
=

1
l 3

g3/ 2(z ¢ ), (53)

where x = (K), = h/(2 (4m )kBT )1/2 and gn(z ) has usual expression. This re-
duces our problem to that of non-interacting bosons but with a difference.
Note that z = 1 expected for T T implies µ = 0 (cf. Equation 51), and z’ <
1 for T > T , demands µ < 0 but for a system of non-interacting bosons we have
µ = 0 for T T , and µ < 0 for T > T . 

The expressions for different thermodynamic properties of the N-phase of
the system (at T near T ) should, obviously, not be different from those derived
for non-interacting bosons72 except that m is replaced by 4m. This justifies our
relations (cf. Equations 19a and 19b) for T . The accuracy of such expressions
depends on the validity of Equation 47b, which assumes that average (k) =

0 and implies that the system is a close packed arrangement of WPs of an av-
erage size d, which in turn reveals that the velocity (vs) of long wave length
sound modes should satisfy vs = vg = h( )1/2/2md (Equation 28). We note that
the experimental vs for He-I really satisfies vs = vg closely at least for the tem-
perature range T to T = 3.2 K1. This means that Equation 47b holds at T > T to
a good approximation. As such the thermodynamic properties of the N-phase
basically arise from K motion. Solving for the internal energy of the system U
= - ( / )(PV/kBT)&z,V by using Equations 52 and 53, we have U = (3/2) · kBT ·
(V/ 3)g5/2(z ) + N 0 = U + N 0, where U = - ( / )(PV/kBT)&z ,V represents the
contribution of K motions and N 0 (=zero point energy) that of k motions. This
analysis not only justifies Equations 48 and 49 but also establishes that the
process of BEC of particles in the state of K = 0 and q = /d should explain the
thermodynamic behavior of the N-phase of the system near T . This is corrob-
orated by the fact that specific heat of He-I ( » 1.7 kB) over the T range from 2.3
to » 3.2 K is very close to its expected value (i.e., slightly higher than 1.5 kB

72).
For better accuracy of the results one may also include the T dependence of the
constant negative interaction energy term assumed to be T independent in this
analysis.

7.0: Properties of He-II

7.1: Thermodynamic Properties

In view of the observation4 that E(Q)Feyn (Equation 29) obtained by Feyn-
man53,63 renders E(Q) values nearly two times the experimental E(Q) 
E(Q )expt for He-II, our theoretical relation (Equation 31) should match closely
with E(Q )expt. Naturally, this ensures that our theory can explain the thermody-
namic properties of He-II accurately. Further, since our theory also provides an
alternative set of relations (Equations 23–27) to obtain E(Q) of SIB, we also
used these relations to obtain E(Q) of He-II by using three adjustable parame-
ters C(Q), d(Q) and mF. We used Equation 23 to obtain E(Q Qmax = / s ) by
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employing

d(Q) = d - d sin Q/2Qmax = 3.5787 - 0.7484 sin Q/2.22 (54)

and

C(Q) = C + C sin Q/2Qmax = 3.1681 + 2.3619 sin Q/2.22 (55)

to find necessary d(Q) and C(Q) at different Q Qmax. These relations have
been constructed intuitively to ensure smooth variation of d(Q) and C(Q) from
their values at Q = 0 to Q = Qmax without any discontinuity even in their first
Q derivative at Qmax beyond which they become Q independent. Values of d,
d , C and C were fixed empirically by using certain experimental data for He-
II. We used (i ) density of He-II (0.1452 gm/cc)1,5 to fix the desired parameters
of Chain-A (Figure 1), i.e., d(Q = 0) and C(Q = 0) = 3.1681 dyne/cm by using
Equation 22, (ii) experimental E(Q) of He-II to find similar parameters of
Chain-B, i.e., d(Qmax) = s = 2.8293Å from the maxon position Qmax = / s =
1.11Å- 1 and C(Qmax) = 5.53 dyne/cm by using E(Qmax) = 13.92 K4, and used
these results to fix d = d - s = 0.7484Å and C = C(Qmax) - C(Q = 0) =
2.3619 dyne/cm.

The fact that our E(Q)theor at low Q < / s has anomalous character is evident
from Figure 2 where we depict our calculated vp(Q ) and vg(Q) which rise to a
maximum of » 5–6 m/sec above vp(Q = 0) and vg(Q = 0). The fact that this
agrees closely with their experimental rise of » 9 m/sec9 concludes the accura-
cy of our E(Q Qmax) values obtained from Equation 23.

We used Equation 24 to find E(Qmax Q 2 /d) by using d(Qmax) = s , and
C(Qmax) = 5.53 dyne/cm and Equation 25 to find E(Q 2 / s ) where a good
match between theory and experiment could be obtained by varying mF be-
tween 3.3mHe at Q = 2 / s and mF » mHe at Q 3.0Å- 1. In view of the fact that
the nature of the excitation at Q = 2.22Å- 1 starts changing from the correlated
motion of SMW pair to a single particle motion, the mF » 3.3mHe at this
Q closely agrees with the inference of our theory that a particle in SMW pair
configuration moves as free particle of mass 4m. When this particle moves out
of the pair correlated motion, it assumes a state of freely moving particle with
increasing Q and we really find mF » m for Q 3.0Å- 1.

Interestingly, position and energy of roton minimum Qmin = 1.99Å- 1 and
Erot(Qmin) » 8.31 K, as obtained from Equations 26 and 27c, are found to be
nearly equal to their experimental values, viz. Qmin = 1.92Å- 1 and Erot(Qmin) =
8.65 K. Evidently, the E(Q)theory has an overall agreement with E(Q)expt for He-
II. Our detailed study of E(Q)61,62 of He-II (to be published separately) con-
cludes that its plateau (E(Q) »  18–20 K for Q > 3.0Å- 1) arises due to a reso-
nance interaction between multiphonon branch (E(Q) » 20 K4) and Esp(Q)
(Equation 25). If this resonance interaction were absent the E(Q) is expected to
follow Esp(Q) (Equation 25) as shown by the dotted part in Figure 1. As such,



for the first time, our model presents a clear picture of microscopic details of
collective motions of the system.

The most important aspect of our theory is its capacity to explain the exper-
imentally observed logarithmic singularity in Cp(T) at T which remained un-
explained as yet. The problem of explaining this singularity was considered to
be a challenging task by Feynman as indicated in his book63, p. 34 but the present
theory reveals its details in good agreement with experimental results for liq-
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Fig. 2. Anomalous nature of vp(Q) and vg(Q) of He-II obtained by using d(Q Qmax ) = 3.5787 -
0.7484 sin( Q/2.22) and C(Q Qmax ) = 3.3181 + 2.3619 sin( Q/2.22) in Equation 23. For
details see Sections 5.2 and 7.0.
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uid 4He. Using the parameters of liquid 4He and n = 0.55 and (0) = in
Equation 46, we find

Cp(J/mole · K) »  - 5.71 ln| z | - 10.35 = - A ln|z | + B, (56)

while the experimental results reveal A = 5.355 and B = - 7.77 for T > T and A
= 5.1 and B = 15.52 for T < T 73. The fact that our A value agrees closely with
experiments speaks of the accuracy of our theoretical result. With respect to
our choice of n = 0.55 and (0) = , we note that (i ) originates basically
from change in momentum k »  x - 1 and x varies around T as |T - T |; note that
critical exponent n lies in the range 0.55 to 0.771. However, we have no definite
reason for our choice of (0) = , except that is the largest possible value
by which phase position of a particle can change.

7.2: Hydrodynamical Properties

To prove that our theory explains the hydrodynamic properties of He-II, we
note that it vindicates: (i) two fluid theory of Landau (Section 5.3), (ii) presence
of quantized vortices (Section 5.6) and (iii) vanishing of s(T) at the boundaries
(Section 5.5.4) of the system. We also find that our theoretical s(T) matches
closely with its experimental values for He-II; this is evident from Figure 3
where we depict: (i) our theoretical s(T) (cf. Curve-A) obtained from (T) =
Eg(T) by using Equations 34 and 39 and (ii) experimental s(T) (cf. Curve-E1)
derived from T dependence of the experimental of He-II available from refer-
ence 1 by using Equations 33 and 39 and similar results (cf. Curve-E2) obtained
from second sound experiments reported in reference 5.

In Figure 3 we also depict nK= 0(T*) (Equation 42b) and nK= 0(T) (Equation
42c) (cf. Curve-B* and Curve-B). It is interesting to note that experimental

s(T) matches closely with nK= 0(T*) (Curve-B*) not with nK= 0(T) (Curve-B);
this corroborates our inference that K = 0 condensation takes place in the G-
state of energy 0 equivalent of T0.

7.3: Other Properties

Figure 3 also shows the T dependence of 0.2.vc(T) with vc(0) = 8.46 m/sec
and 10.Eg(T ) with Eg(0) = .142 J/Mole. Eg(0) (0) obtained from Equation
34a is set equal to Eg(0) obtained from Equation 33 by using c = 10.35 K in
Equation 34b. Our estimates74 of (i ) T » 2.26, 2.03, and 1.96 K, respectively,
for sc, bcc and fcc assumed arrangement of WPs, (ii) upper bound vc(T) chang-
ing smoothly from 0 (at T ) to » 9m/sec (at T = 0) (cf. Figure 3), (iii) the low
Q values of vp = vg » 246 (for sc), 238 (for bcc) and 220 (for fcc) m/sec, (iv)
x (T ) (Equation 38) varying smoothly from » 10- 6 cm at T = 0 to infinitely large
value at T = T , etc., agree with experiments (see reference 5 for i–ii, reference
9 for iii, and reference 75 for iv).

While our value ( » - 21 K) of potential energy per 4He61 atom does not differ



from others18, our zero point kinetic energy ( » 3.93 K) is much lower than (14
K estimated by others18. Evidently, the configuration revealed by our theory is
energetically favourable one. Using the values of x (T ) and Eg(T) and following
the standard method76 we obtained the time of persistent currents for He-II as
» 1034 sec, which is much larger than the life of our universe, i.e., » 1018 sec. As
such we find that all important conclusions of our theory that the S-state of the
system should exhibit (i) negative volume expansion, (ii) infinitely high ,
(iii) coherence of particle motion, (iv) = 0 for its capillary flow, (v) 0 in
the state of its rotation, etc., are well known properties of He-II.

An overall agreement between experimental and theoretical results for
LHE-4 establishes the accuracy of our theory.

8.0: Comparison With CTs

CTs emphasize the classical size ( s ) of a particle, even for low energy parti-
cles of /2 > s and use a boundary condition k(r s ) = 0 (or its equivalent).
They assume that (i ) BEC in a SIB is a collection of macroscopically large
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Fig. 3. t = T/T dependence of (i) 0.2.vc(t) (m/sec), (ii) 10.Eg(t) (J/mole), (iii) s(t)/ —Curve-A:
Theoretical values using Equations 34 and 39 (with ( T) = Eg(T )), and Curve-E1: Exper-
imental values obtained from experimental density data1 used in Equation 33, and Curve-
E2: Experimental values obtained from second sound velocity, and (iv) Condensate Frac-
tion or Order Parameter—Curve-B: nK= 0(T ) (Equation 42c), Curve-B*: nK= 0(T*)
(Equation 42b), Curve-C: nK= 0(T ) (Equation A-7) and Curve-C*: nK= 0(T*) (Equation A-
8). Curve-A also depicts n*(T) (Equation A-9) which also defines an equivalent of
nK= 0(T*).
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number of atoms np= 0(T)N in a single particle state of p = 0, (ii) the G-state of
the system has np= 0(0)N particles of p = 0 at a single point of = 0 in -space,
and [1 - np= 0(0)]N particles of p 0 at randomly distributed -positions, and
(iii) p = 0 condensate, believed to be somehow related to s(T), is the origin of
superfluidity and related properties of the S-phase. The inter-particle repul-
sion, V R

i j , is found to deplete np= 0(T) to a large extent, e.g., their calculations
show that the maximum value of np= 0(T = 0) in LHE-4 can be only » 0.1320.
CTs seek the origin of superfluidity and related properties in g(r) presumably
because g(r) in S-phase differs slightly from that in N-phase and their pre-
sumed p = 0 condensate is believed to be responsible for this difference. They
further presume that to a good approximation T is not different from TBEC ob-
tained for a SNIB72.

On the other hand our theory emphasizes the quantum size (or the WP size)
/2 of particles. It uses (q, - q) pair condensation as its basic theme. By identi-

fying the basic features of the relative motion of two HC particles, (cf. Equa-
tions 4 and 5 of reference 55), it obtains the correct wave function that repre-
sents two particles in a state of their wave mechanical superposition. It replaces
the boundary condition, k(r s ) = 0, losing its significance and meaning par-
ticularly for the particles of /2 > s , by /2 d, which ensures that the WPs of
two particles do not overlap. The theory concludes that each particle in the sys-
tem represents a (q, - q) pair moving with CM momentum K and -transition is
the onset of an order-disorder of particles in -space followed simultaneously
by the BEC of (q, - q) pairs in the G-state defined by q = /d and K = 0. As a
basic feature of the S-phase, particles are found to have an orderly arrangement
( = 2n ) in -space. Superfluidity and related aspects are identified to be the
obvious properties of the G-state configuration (Equation 20) and a weak effect
which binds particles in -space. The fact that the binding energy per 4He atom
in He-II is found to be about 10- 2

0 speaks of the weakness of the effect. The
inter-particle repulsion V R

i j (r) » VHC(r) forces all particles to condense into a
single state of q = /d and K = 0 leaving no chance for even one particle to have
q < /d and the amount of K = 0 condensate nK= 0(T*) (Equation 42b) increases
with decreasing T* monotonically from nK= 0(T*) = 0 at T to reach at exactly
1.0 at T* = 0. We also find that another related identical quantity n*(T) (Equa-
tion A-9, Appendix A), rises monotonically on cooling from n*(T ) = 0 to n*(T
= 0) = 1.0 and this behavior of n*(T) matches closely with experimentally ob-
served s(T) in case of He-II. Concluding that particles in S-phase are dominat-
ed by phase correlations g( ) (a combination of q-correlations and r-correla-
tions) as its additional aspect (not present in N-phase), our theory emphasizes
g( ) as the origin of the unique properties of S-phase. For the first time our the-
ory could find the origin of the experimentally observed logarithmic singularity
of specific heat and related properties at T . As such it finds a solution to the
problem which at times was considered it to be a challenging problem by Feyn-
man63, p. 34. Similarly, it also provides a more accurate account of the observa-
tion of quantized vortices in S-phase and their absence in N-phase.



It may, finally, be mentioned that pairing theories have also been developed
earlier by using conventional approach by Valatin and Butler77, Girardeau and
Arnowitt78, Luban79, Kobe80, and Brown and Coopersmith81 assuming the exit-
stence of p = 0 condensate, and by Congilio et al.82, and Evans and Imery83 by
incorporating an effective attraction that produces pair condensation in the
system. However, these theories have been developed by usual conventional
field theoretical methodology and they too fail to explain the properties of
LHE-4.

9.0: Concluding Remarks

This paper presents a microscopic theory of a system of interacting bosons
such as liquid 4He. It explains the properties of liquid 4He with unparalleled
accuracy, simplicity and clarity. It is consistent with excluded volume condi-
tion51 as well as the microscopic and macroscopic uncertainty5. It vindicates
(i) the two fluid theory of Landau14, (ii) London’s idea of macroscopic wave
function of the S-state12, and (iii) the observation of Bogoliubov15 that super-
fluidity is an interplay of inter-particle interactions, etc. All particles below -
point have a kind of collective binding which serves as an energy gap between
the S- and N-phases and makes the entire system behave like a single macro-
molecule as envisaged by Foot and Steane67.

When the interactions are switched off, a particle would not experience the
existence of the other. We note that such a particle can only have its self super-
position when it is reflected from the walls of the container and this state
would not last long unless its »  2L (L = being the size of the container), i.e.,
the momentum is as low as q0 = /L » 0 and T » 0. Evidently, Equation 10a,
representing the SS/MS states of particles, loses its significance and it can be
normalized to unity. We are obviously left with Equation 10b as an effective
part of the state function (Equation 10) and we find that this function is identi-
cal to the usual wave function of N plane waves representing N non-interacting
particles. As such our theory gets transformed into the standard theory of non-
interacting particles on setting Vij(r) = 0.

It may be noted that under our valid approximations, V R
i j (r) » VHC(r) (shown

to be A (r)55) and V A
i j (r) » - V0, the solution of the Schrodiger equation of the

system for its physically possible state (where every pair of particles satisfies r
s ) is, obviously, a set of N plane waves. Since the SMW configuration adopt-

ed by the system is simply a consequence of the superposition of these plane
waves, it is evident that our theory is consistent with the translational invari-
ance of the fluid. We find that VHC(r) (r)-repulsion poses no problem of di-
vergence of energy expectation55.

The formation of a SMW from the superposition of two plane waves of two
HC particles is as natural as the phenomena of interference and diffraction in-
volving strongly interacting particles such as electrons, neutrons, He atoms,
etc.84. Since the nature of interference and diffraction patterns for these strongly
interacting particles does not differ from the nature of such patterns for non-in-

Microscopic Theory of a System of Interacting Bosons 109



110 Y. S. Jain

teracting photons, it is evident that only wave nature (not the inter-particle inter-
actions) decides the positions of particles (interacting or non-interacting) in
their wave mechanical superposition, which means that the formation of a SMW
of two interacting particles such as 4He is supported by all these experiments.

Although, as concluded in Section 5.4, two particles in (q, - q) pair configu-
ration do form a bound pair at T < T , this binding culminates into a collective
binding among all the N atoms and leads to the formation of a single macro-
molecule of N atoms where no two atoms can be identified to represent
He2 type molecular unit. In this context we also note that this binding binds
particles in -, q-, as well as r-space, and, for this reason, it can not be equated
with an interatomic binding purely in r-space of diatomic molecule like O2. As
discussed in our third paper56, atoms in a Fermi system too can have collective
binding but the fact that only two particles in such a system can have identical
K may help in distinguishing one pair of fermions from the other and one may
identify each pair as a diatomic molecule.

Since this theory has been successfully developed within the framework of
the wave mechanics (in variance with a speculatory remark of Putterman5, cf.
Section 1.0), it is evident that the wave mechanics is well equipped with neces-
sary principles for explaining the superfluidity of He-II. As discussed in Sec-
tion 5.3, our theory also answers Putterman’s question5, p. XXI, “how in a single
component system there can exist two fluids with independent velocities one
of which has a quantized circulation.” It also proves that microscopic theory of
a simple many body quantum system like liquid 4He needs not be as compli-
cated as its CTs.

Finally, we find56 that the framework of our theory has great potential for
unifying the physics of widely different many body quantum systems of
bosons as well as fermions. It is possible that the method of second quantiza-
tion may have some advantages over the usual method of solving the Schro-
dinger equation but this study establishes that the latter is an equally versatile
approach to reveal the physics of a many body quantum system like liquid he-
lium. In fact the A2 group of CTs (cf. Section 1.0) based on g(r) and S(Q) do
use the latter methodology but not the way we have used; they emphasize
g(r) rather than g( ), although -position of a particle is more relevant than its
r-position when it behaves like a wave. Further since two particles in their
wave mechanical superposition leading to g( ) are the nearest neighbor with r
= d = /2, their effective interaction is VHC(r) A (r) leading to zero point re-
pulsion. Evidently, hypernetted chain (HNC) Schrodinger equation used for
finding g(r)38,40 loses its relevance for finding g( ). In addition our theory
helps in understanding the system in terms of both (i) F expressed as a function
of a suitable OP (cf. Appendix A), as well as (ii) -corelations, G-state proper-
ties and K = 0 condensate fraction, nK= 0(T*) (cf. Sections 2.0–5.0). A signifi-
cant amount of work related to a detailed study of excitation spectrum and
quantum vortices in a SIB has been completed by the author and will be sub-
mitted soon for publication.



APPENDIX A
Free Energy and Order Parameter

We find that (i) each particle in the system represents a (q, - q) pair moving
with CM momentum K and total energy E = 0 + h̄2K2/8m (cf. Equation 47b) of
its q (= q0 = /d) and K motions, and (ii) to a good approximation (valid even at
T > T at least near the -point), each of the N - N*(T) particles (with N*(T) rep-
resenting particles in the excited state of K 2 / s ) exhibits quantum correlation
(equivalent potential of U s

i j = - kBT0 · ln2) with its neighbors; N*(T) particles
lack quantum correlation for their excitation wave length being < s . Conse-
quently, the free energy F of the system can be expressed as

F = F(q) + F(K), (A-1)

with

F(q) = N 0 - [N - N*(T)]kBT0 · ln2 (A-2)

and

F(K ) = kB T
2 (8mkBT )3/ 2

h3

Z ¥

0
x1/ 2 ln(1 - ze - x )dx

= kB T
1
l 3

g5/ 2(z). (A-3)

While U s
i j , as such is a fictitious potential, it manifests itself as a real interac-

tion at T T at which q and r have interdependence through 2qr = 2n and
particles get locked at relative phase positions = 2n . This is well evident
from the existence of the well known zero-point repulsion which does not
allow WPs of two particles to share common r. Since the effect does not exist
when /2 < d (i.e., for T > T ), and the net effect of the quantum correlations at
T > T represented by U(T > T ) =  - [N - N*(T )]kBT0 ln2 serves as the inopera-
tive part of such potential, U(T ) = [N - N*(T )] kBT0 ln2 can be used as its
zero level. Using these facts, we have

F = N 0 + F(K), for T > T (A-4)

and

F = N 0 - [N - N*(T)]kBT0 · ln2 + F(K), for T > T . (A-5)

Since K motions define the thermal excitations of the system both in S- and N-
phases, and superfluidity is observed at all T T including T = 0, at which
thermal excitations cease to exit, F(K) is not expected to play any key role in
accounting for the phenomenon. Naturally, F(q) must explain superfluidity.

As usual, we may express F as a function of some suitable OP. To identify

Microscopic Theory of a System of Interacting Bosons 111



112 Y. S. Jain

the right OP we note that all superfluid related properties, viz. (i ) the onset of
an order in the positions of particles in r-, q- and -spaces, (ii) collective na-
ture of thermal excitations for Q < 2 / s , (iii) negative volume expansion coef-
ficient, (iv) increased quantum correlation among the particles, (v) coherence
and laser-like behavior, (vi) increasing strength of collective binding, (vii) log-
arithmic singularity of specific heat and related properties, etc., as concluded
by our theory and supported by experiments on He-II cooled through T , are
the consequence of WP manifestation of particles. These are also related to the
seemingly interrelated aspects, viz. (i ) perturbative effect of V A

i j (r), (ii) inter-
particle quantum correlations, (iii) K = 0 condensate (expressed by nK= 0 =
NK= 0/N, the fraction of particles condensed into the G-state, i.e., a state of K =
0 and q = /d), whose magnitude increases with decreasing T below T . Obvi-
ously, the most suitable OP should be none other than nK= 0. We, therefore,
have

F (T , nK= 0) = F0 +
1
2

A(nK = 0)2 +
1
4

B(nK = 0)4 +
1
6

C (nK = 0)6 + · · · , (A-6)

where F0 (independent of nK= 0) and A, B, C,... are smooth function of T and
similar physical variables of the system. Defining A = (T - T )/T , we find
that

nK = 0(T )

s
Tl - T

Tl
. (A-7)

Renormalising nK= 0(T ) through T* = T - T0, we have

nK = 0(T * )

s
T *

l - T *

T *
l

=

s
Tl - T

Tl - T0
. (A-8)

As shown in Figure 3, we find that the experimental s(T) (a well known OP
used in the phenomenological theory of Landau) for He-II (cf. Curves E1 and
E2) does not match with Equation A-7 (Curve-C). Instead it matches closely
with nK= 0(T*) (Equation A-8, Curve-C*) and nK= 0(T*) (Equation 42b, Curve-
B*). This not only proves the consistency of Equation A-8 and different rela-
tions for nK= 0(T*), but also establishes the accuracy of the present theory. We
also find that out of the N*(T ) particles lacking quantum correlation at T ,
[N*(T ) - N*(T)] assume the correlations on reaching at T < T from T . Defin-
ing

n*(T) = [N*(T ) - N*(T)]/N*(T ) (A-9)

we find that experimental s(T) of He-II (Curves E1 and E2) shows better
agreement with n*(T) (Curve-A) as a function of T (not of T*). It appears that
due to the effect of HC interaction nK= 0(T) in a SIB like LHE-4 is better repre-
sented by n*(T). In summary, the close agreement of experimental s(T ) with
(i) nK= 0(T*) (Equation 42b and Curve-B*), (ii) nK= 0(T*) (Equation A-8 and



Curve-C*) and (iii) n*(T) (Equation A-9 and Curve-A) (cf. Figure 3 for He-II ),
and a relation of nK= 0(T*) and n*(T) (as defined in this study) with the wave na-
ture of particles, imply that [N*(T ) - N*(T )]kBT0 · ln2 = (T)= Eg(T) (Equa-
tions 33 and 34) is the most relevant part of F and n*(T) or nK= 0(T*) should be
the most suitable OP of the -transition.
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