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Abstract-In random event generator (REG) experiments yielding anomalous 
results, any evolution of effect sizes over extended runs of data collection 
could, in principle, give some insight into the fundamental mechanism of the 
binary probability distortions. Retrospective examination of large individual 
and collective databases acquired over many years of previous study proves 
only marginally capable of distinguishing any such functional dependence on 
run length from a constant effect size model, which does little to narrow the 
phenomenological possibilities. However, an unanticipated ancillary feature of 
this data treatment is the emergence of a suggestively small blockwise variance 
in the anomalous effect sizes, possibly indicative of sequential correlations in 
the data streams that are not present in the baseline data. If real, such correla- 
tions would imply that the mechanism of the anomalous effect is more compli- 
cated than a simple change of elementary binary probabilities, although the set 
of possible models is so large that no specific inference can be drawn at this time. 

Keywords: consciousness-human machine anomalies-random event 
generator (REG) 

I. Introduction 

Most electronic random event generators (REGS) used in research on 
consciousness-related anomalies convert some primary form of conduction 
electron thermal noise into secondary random strings of binary pulses suitable 
for systematic accumulation and Properly designed and con- 
structed, such devices in nominal operation produce output digital data that 
cumulate to the theoretical binomial distribution for binary probability p = 0.5. 
For a sufficiently large number of samples this is well approximated by the 
normal Gaussian distribution, 

where n(c) is the number of sample counts of value c, N the total number of 
samples taken, p the mean value of the distribution, and a its standard deviation. 
For p = 0.5, p and a take the following values: 
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In the simplest experimental applications, human operators are asked to 
influence these devices to produce higher than chance values of p (HI); lower 
than chance values (LO); or chance (baseline) values (BL), in an interspersed 
tripolar protocol. These results are then compared with each other, with 
calibration data, and with theoretical expectations to compute statistical figures 
of merit for any apparently anomalous behavior. The most direct indicators of 
aberrations in the output strings are shifts in the means of their count 
distributions, Ap. These can be instructively displayed as cumulative deviation 
graphs of the Ap, as a function of the number of samples collected. The 
theoretically anticipated behavior of such displays, which should be verified by 
empirical calibrations of the devices, is simply a one-dimensional binary random 
walk, as sketched in Figure 1, trace C. Note that while the expected mean value 
of Ap remains at zero, the anticipated excursions of the cumulative A p  about 
this value increase as the prevailing standard deviation, i.e., proportional to a. 

In contrast to this chance behavior, the results of "successful" active 
experiments typically display the same character of stochastic progression, but 
now superimposed on secular drifts toward positive, or negative, values of 
cumulative Ap, in correlation with the pre-recorded intentions of the operators 
(Figure 1, traces HI and LO). Baseline intention results tend to conform more 
closely to the chance expectations, but can display subtler aberrations of their 
o ~ n . ( ~ ? ~ )  

The most parsimonious interpretation of such empirical behavior is that the 
operator influence manifests as a small change in the intrinsic binary probability 
of the bit-wise events that are being counted, Ap, which shifts the running mean 
values of the distributions by an amount Ap = ApN. In other words, the 
experimental behavior continues to conform to chance distributions, but now for 
binary samples of slightly increased, or decreased, intrinsic probabilities. More 
detailed analyses of the overall shape of the data distribution functions have 
supported this model of the anomalous effects at sibtler structural levels as 
well.'5' None of these assessments, however, are competent to comment on the 
functional dependence of Ap itself on the controlled, or uncontrolled, 
parameters of the experiment, and if this model is to have any interpretive 
value regarding the basic nature of the anomalous correlations with operator 
intention, some understanding of those relationships is essential. We know from 
the large databases of our hundreds of operators, especially the so-called 
"prolific" operators who have provided large individual databases, that if Ap is 
indeed the active factor, it is quite operator-specific.".2) Beyond that, our prolific 
operators are known to evidence long-term changes in their individual effective 
Ap values, possibly associated with psychological aspects such as mood, style, 



Run Length 

Fig. 1. Deviations of the output of an electronic random event generator from the theoretical chance 
mean as a function of the number of samples collected. Trace C: chance (calibration) 
behavior for p = 0.5. Trace HI: typical result of a "successful" high-intention experiment. 
Trace LO: typical result of a "successful" low-intention experiment. 

health, novelty/boredom, maturation, etc. In contrast, the apparent variability in 
their individual and collective A p  values across experiments using different 
types of random devices as targets usually is less pronounced, suggesting that 
such a model is usefully ubiquitous, i.e., relatively independent of technical 
details. 

What is more problematic to assess, given the scale of the inherent noise of 
the random component of the data traces, is the degree of shorter-term 
variability in the A p  influence that may prevail in any given case. To the extent 
that this may be comparable with, or more rapid than, that of the intrinsic 
randomicity of the output data, it would render such a feature useless, both 
conceptually and analytically. Only if the A p  values are relatively stable and 
capable of correlation with salient psychological or technical parameters does 
the concept retain much utility. The following analysis proceeds under the latter 
assumption, but is limited to just one such possible correlate which has both 
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Fig. 2. Progression of overall mean values in a typical REG experiment. Trace C: chance behavior. 
Trace HI: successful high effort. Trace LO: successful low effort. 

technical and psychological implications, namely the number of binary samples 
collected in a given experimental application. 

11. Constant Effect Size 

As alternatively sketched in Figure 2, trace C, the evolution of the per- 
formance of an ideally random binary source of constant p = 0.5 as a function 
of the number of samples collected entails a cumulative mean trace centered on 
p, = ~ / 2 ,  embossed with a random component of amplitude characterized by 
a standard deviation growing as oc = m. These two properties, p and o, 
completely define the output count distributions, and their quotient, pc/oc = fi7 
in a sense represents the "signal-to-noise" ratio of the device. 

Now, let us next assume that in a given active experiment the binary 
probability is changed by a constant amount, Ap, characteristic of that particular 
operator and his direction of intention (HI or LO), for that particular experiment, 
at that particular time. The corresponding course of the cumulative mean trace is 
now linearly displaced from the chance mean by an average amount Ap(N) = 
ApN. (The difference between the new standard deviation and the chance value 
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is second order in Ap and can safely be neglected.) We also define as alternative 
statistical figures of merit an effect size E and a 2-score given by 

Note that while Ap and I are linearly related and used more or less 
interchangeably in this analysis, the latter may be expressed in a variety of units, 
e.g., bitslbit, bitsltrial, bitslrun, etc. Note also that if the prevailing binary 
probability (or average effect size) is independent of N, the average 2-score 
increases as a. (This, of course, is the common premise that predicates the 
acquisition of large databases to escalate small, constant effect sizes to high 
statistical significance.) 

111. Variable Effect Size 

If, however, Ap is not constant over the given experiment, but is some func- 
tion of the locally prevailing sample number, n, we must integrate this 
dependence to compute the cumulative mean shift, effect size, and 2-score up to 
the desired N, i.e., 

where ApN, EN, and ZN denote the values achieved at the completion of n = N. 
Obviously, if Ap(n) is a constant over the span of N, we recover the previous 
results ApN = ApN, EN = 2Ap, and ZN = 2Apfi,  but for all other cases, the 
behavior of 2 should be indicative of the profile of p(n), again provided that 
p(n) varies much more slowly than the stochastic noise of the system output. 

For the balance of the discussion, let us assume that Ap is a monotonic 
function of n; that is, that it only increases, or decreases, over the pertinent 
n-span of the given application. For example, if Ap increases linearly 
with n, 
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In contrast, if p decreases inversely with n, 

A particularly interesting special case is that for Ap a l / f i ,  which yields 

ZN = const. 

This case calls to mind a number of empirical results and theoretical 
conceptualizations that have characterized the Princeton Engineering Anomalies 
Research (PEAR) REG research for many years. On the experimental side, there 
is the tendency of a number of individual and collective databases to yield 
2-scores that digress from the parabolic increases a fi predicted for constant 
Ap behaviors, toward asymptotic approaches to constant Z values, independent 
of N, with the associated declines in effect sizes.@) 

On the theoretical side, we have the informal testimony of some of our 
operators, and various conceptual speculations in some of our models, that it is 
the stochastic "noise" riding on the secular output "signals" of the target 
devices that provides the "raw material" out of which the anomalous deviations 
are created.(7) If one ventures to identify as a quantitative index of this 
"available noise" the ratio of the prevailing standard deviation to the cumulative 
mean, the functional dependence of Ap(n) conforms to this particular example, 
1.e.: 

The corresponding hypothesis, then, is that as an operator proceeds to 
accumulate data in an REG experiment, the fraction of "available noise" or 
"intrinsic uncertainty" is decreasing, and with it his Ap ability, perhaps in 
accordance with the above relations. In other words, as the output signal, p(n), 
becomes relatively cleaner with increasing n, the capacity for altering it 
deteriorates at a rate that allows no improvement in the 2-score, no matter how 
long, or how rapidly, the data are collected. 

IV. Tests 

A number of ways suggest themselves to search for the best empirical 
identification of the functional dependence of Ap(n), utilizing retrospective 
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Table 1: Dependence of Effect Sizes, E , on Run Lengths; 
Local, Benchmark ~ a t a ( ~ )  

91 Single Operators 

Trial s/Run BL HI LO A 

50 0.014 + 1.283 3.181 + 1.245 -2.349 f 1.250 2.767 f 0.882 

100 2.184 f 1.730 4.592 f 1.730 -1.098 f. 1.730 2.845 f 1.224 

1000 2.081k1.195 1.11241.195 -1.056k1.195 1.084f0.845 

Operator A 

Trials/Run BL HI LO A 

50 21.000 k 9.129 -13.224 + 9.285 -6.597 f 8.980 -2.983 + 6.455 

100 0.050 + 4.564 9.346 f 4.564 -6.558 f 4.564 7.952 + 3.227 

1OOO 4.213 f 3.627 7.692 f. 3,627 -6.582 f 3.627 7.137 + 2.565 

Operator B 

TrialsIRun BL HI LO A 

50 0.683 + 2.661 7.767 + 2.740 -6.968 + 2.741 7.368 f. 1.938 

100 -4.257 + 4.226 13.367 + 4.241 -5.465 + 4.21 1 9.388 k 2.988 

1000 -0.235 L 4.385 9.785 f 4.385 -7.088 + 4.385 8.437 f 3.101 

Notes: Effect sizes, E = 2 A p , multiplied by 1 04. Uncertainties reflect sizes of 
data sets. 

analyses of the large 50-, loo-, and 1000-trial datasets that comprise our entire 
benchmark databa~e.'~) The most direct of these methods simply compares the 
overall effect sizes achieved by individual operators, or by entire groups of 
operators, on these three run lengths. Examples of these are shown in Table 1 for 
composite databases comprising all single, local operators who used more than 
one run length, and for two of our most prolific operators, here labeled A and B, 
individually. These values, of course, are averages over the run lengths, as well 
as over the full databases, but nonetheless should be indicative of any gross 
trends in Ap(n). Graphical representations of these same data are presented in 
Figures 3 through 14. Here we have plotted the average effect sizes vs. the 
inverse square root of the run lengths, whereby the two options of Ap = const. 
and Ap l / f i  present as families of horizontal lines and sloped lines through 
the origin, respectively. The best fits to the data for these two models, computed 
as least squares one-parameter linear regressions, are shown as dotted lines, to be 
compared with full two-parameter fits through the data, shown as solid lines. 
The most effective test for comparing the merits of these models is to compute 
the Z-score of each of these two parameters against zero.@' Since the constant- 
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Fig. 3. Composite benchmark BL data. Shifts in binary probabilities, Ap, in units of lo4 bitslbit, 
plotted vs. 1/e. Solid line: two-parameter (intercept and slope) linear regression least 
squares fit to data. Dotted lines: one-parameter fits to Ap = const. (horizontal line) and 
Ap 1/& (sloped line through origin) models. (Error bars reflect size of database. 
Z values reflect goodness of fits. See text.) 
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Fig. 4. Composite benchmark HI data. (See Figure 3 caption.) 



Run Length 

Benchmark LO 
Z vs Constant: -0 703 , Z vs Slope. -0 383 
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Fig. 5. Composite benchmark LO data. (See Figure 3 caption.) 
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Fig. 6. Composite benchmark A data. (See Figure 3 caption.) 
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Operator A, BL 
Z vs Constant: 0.575 ; Z vs Slope: 0.315 

I I I I I + I I 

0.0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 
lnverse square root of run length 

Fig. 7. Operator A-BL data. (See Figure 3 caption.) 

Z vs Constant: -1.082 ; Z vs Slope: 2.163 
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Fig. 8. Operator A-HI data. (See Figure 3 caption.) 



Run Length 459 

Operator A, LO 
Z vs Constant: 0.002 ; Z vs Slope: -1.259 

1 I I I I 1 I I 

0.0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 
lnverse square root of run length 

Fig. 9. Operator A-LO data. (See Figure 3 caption.) 
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Fig. 10. Operator A-A data. (See Figure 3 caption.) 
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Operator B, BL 

Z vs Constant: 0.29 ; Z vs Slope: -0.383 
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Fig. 11 .  Operator B-BL data. (See Figure 3 caption.) 
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Fig. 12. Operator B-HI data. (See Figure 3 caption.) 
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Z vs Constant: -0.01 ; Z vs Slope: -1.208 
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lnverse square root of run length 

Fig. 13. Operator B-LO data. (See Figure 3 caption.) 
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Fig. 14. Operator B-A data. (See Figure 3 caption.) 
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effect model requires the linear fits to have zero slope, the 2-score of the data's 
regression slope, against the zero value required by the model, is a Z-score 
against the hypothesis that the data contain a constant effect; large values of this 
Z refute this model. Likewise, since the Ap 1/ f i  model is in this 
representation a linear fit that must pass through the origin, the 2-score of the 
data regression intercept value is the appropriate Z against the hypothesis that 
the effect declines as 1 / fi. 

Looking first at the baseline data for the composite database (Figure 3), we 
find little discrimination between these two models, as would be expected for 
these small effect sizes. For the HI data (Figure 4), there appears a marginal 
preference for the Ap a 1 /fi model, and similarly, but even less so, for the LO 
data (Figure 5). These compound to a A behavior (Figure 6) which shows a bit 
larger tendency to the same model, but still insignificantly so. 

On the argument that these data are badly diluted by the large fraction of 
"unsuccessful" performances included in the composite database, we then 
turn to individual data from two of our most successful operators to search 
for better discriminations between these two Ap options. For operator A we 
again find little distinction in the baseline or HI data (Figures 7 & 8), but 
some preference in the LO and A for the constant Ap model (Figures 9 & 
10). Only in operator B data do we find statistically significant 
discriminations in favor of the constant Ap model, in both the HI and A 
groupings (Figures 12 & 14). 

A more sophisticated approach entails breaking the three run-length sets into 
50-trial segments, i.e., one segment for all 50-trial runs, two segments for all 
100-trial runs, and 20 segments for all 1000-trial runs, and plotting the cor- 
responding effect sizes vs. the ordinal number of the segments. Figures 15 
through 18 show such graphs for the baseline (BL), high (HI), low (LO), and 
high minus low (A) data for the full benchmark database. These data can then 
also be subjected to a least squares fit against any functional model of Ap(n). 
Superimposed on the figures are the best such fits against the two models 
Ap = const. and Ap a 1 1 6 .  It is quite evident from casual inspection of these 
figures that even this more comprehensive treatment lacks the statistical power 
to distinguish clearly between the two models. To confirm this quantitatively, 
the plotted data may be compared with both of the best-fit model predictions to 
generate a chi-squared ( x ~ )  value for the residual variations from these models. 
These X2 values, their degrees of freedom, and their associated chance 
probabilities are listed in Table 2. In contrast to the BL data, it appears that 
the HI, LO, and A data all entail somewhat less variation than expected by 
chance for both of the models, but as anticipated, the two models appear equally 
good; i.e., the data cannot distinguish between them. 

It could again be posited that the discrimination we seek is being obscured by 
the internal vagaries of this large database, e.g. by the vast disparities in 
individual operator performance, dataset sizes, personal preferences for 
particular run lengths, etc. For this reason, it again seems worthwhile to 
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Benchmark BL 
ChiA2(DF)P: Constant 28.166 (22) 0.17 l/sqrt(N) 27.931 (22) 0.178 

1oC T 

50-trial runs 
100-trial runs 
1000-trial runs 

5 10 15 
Position of 50-trial segment within run 

Fig. 15. Composite benchmark BL data. Evolution of binary probability shifts, A p ,  as a function of 
N within runs, compared with A p  = const. (horizontal dotted line) and A p  I/@ (dotted 
curve) models. (See text.) 

Benchmark HI 

I I I I I I 
0 5 10 15 20 

Position of 50-trial segment within run 

Fig. 16. Composite benchmark HI data. (See Figure 15 caption.) 
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Benchmark LO 
ChiA2(DF)P: Constant 13.886 (22) 0.905 l/sqrt(N) 13.503 (22) 0.918 

Fig. 17. Composite benchmark LO data. (See Figure 15 caption.) 

Benchmark DELTA 
ChiA2(DF)P: Constant 12.689 (22) 0.941 l/sqrt(N) 11.737 (22) 0.963 

T 

X 50-trial runs 
100-trial runs 
1000-trial runs 

-eOL I 5 I 10 I 15 I 20 I 

Position of 50-trial segment within run 

Fig. 18. Composite benchmark A (HI - LO) data. (See Figure 15 caption.) 
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Table 2: Effect Evolution As a Function of n within Runs: 
Local, Benchmark ~ a t a : ' ~ )  

X2 Values of 50-Trial Segments of 50-, loo-, and 1000-Trial Runs 
vs. Ap = const. and Ap = const./ & Best-Fit Models 

91 Single Operators 

examine individually the data from two of the most successful prolific operators, 
to see whether a particular Ap(n) preference emerges at that level. Figures 19 
through 26 and Table 2 show the corresponding graphical treatments and X2 
tabulations for the two operators used above, again labeled A and B. The former 
displays behavior similar to that of the composite database with intentional 
results a bit too-closely configured to both of the models. The latter, however, 

X2 vs. Ap = k 

(Px) 
x2 vs. Ap = k/ & 

(PA 

Operator A 

X2 vs. Ap = k 

( P x )  

x 2 v s . A p = k / &  

(PA 

BL 

28.17 

(0.17) 

27.93 

(0.18) 

24.03 

(0.35) 

24.06 

(0.34) 

HI 

16.30 

(0.80) 

15.75 

(0.83) 

Operator B 

LO 

13.89 

(0.9 1) 

13.50 

(0.92) 

11.06 

(0.97) 

15.55 

(0.83) 

15 -90 

(0.82) 

19.72 

(0.60) 

19.26 

(0.63) 

28.00 

(0.18) 

X2 V S .  Ap = k 

(PJ 

x 2 v s . ~ p = k / &  

(PA 

A 

12.69 

(0.94) 

11.74 

(0.96) 

14.5 1 

(0.88) 

14.67 

(0.88) 

Notes: All x2 have 22 degrees of freedom. x2 probabilities @,) > 
0.50 connote better fits than average chance expectations. 

27.16 

(0.2 1) 

27.16 

(0.21) 

19.14 

(0.64) 

25.13 

(0.29) 

14.14 

(0.90) 

17.15 

(0.76) 
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Operator A, BL 
ChiA2(DF)P: Constant 24.029 (22) 0.346 l/sqrt(N) 24.063 (22) 0.344 

Position of 50-trial segment within run 

Fig. 19. Operator A-BL data. (See Figure 15 caption.) 

Fig. 20. Operator A-HI data. (See Figure 15 caption.) 
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Fig. 21. Operator A-LO data. (See Figure 15 caption.) 

Operator A, LO 

Operator A, DELTA 
20 - ChiA2(DF)P: Constant 11.06 (22) 0.974 l/sqrt(N) 15.551 (22) 0.838 

30 - ChiA2(DF)P: Constant 14.513 (22) 0.882 l/sqrt(N) 14.674 (22) 0.876 

Fig. 22. Operator A-A data. (See Figure 15 caption.) 
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Operator B, BL 
ChiA2(DF)P: Constant 27.1 61 (22) 0.205 l/sqrt(N) 27.1 62 (22) 0.205 

Fig. 23. Operator B-BL data. (See Figure 15 caption.) 

X 50-trial runs 
-40 + 100-trial runs + 1000-trial runs I I I I 

0 5 10 15 20 
Position of 50-trial segment within run 

Fig. 24. Operator B-HI data. (See Figure 15 caption.) 
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Operator B, LO 
ChiA2(DF)P: Constant 14.143 (22) 0.896 l/sqrt(N) 17.145 (22) 0.755 

T 

5 10 15 
Position of 50-trial segment within run 

X 50-trial runs 
-301 + IW-trial runs 
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Fig. 25. Operator B-LO data. (See Figure 15 caption.) 
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Operator B, DELTA 
ChiA2(DF)P: Constant 19.264 (22) 0.629 l/sqrt(N) 28.004 (22) 0.1 76 

Fig. 26. Operator B-A data. (See Figure 15 caption.) 
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again shows some preference, albeit not statistically significant, in both the HI 
and A data, for the constant Ap model. 

V. Discussion 

From these and many other data not presented here, it thus appears that the 
hypothesis of an effect size driven by the local "noise-to-signal ratio" (or, more 
technically, the "cumulative proportional uncertainty") as defined by the alp 
criterion, cannot be sustained. Rather, at least in the case of operator B, it is the 
constant Ap model that better fits the data, albeit marginally so. It is possible, of 
course, that the technical ratio o /p  is not the pertinent specification of noise1 
signal in the psychological context. For example, if it were the ratio of the 
variance, a2, of the output data stream to the developing mean value, p(n), that 
conditioned the Ap capability, then this index, and its corresponding effect size, 
would be independent of n, and we could no longer even attempt to distinguish 
this model from any other constant Ap version. 

Alternatively, one could speculate that the proper specification of the 
"signal" factor in the noise-to-signal ratio is not the cumulative mean, p(n), 
but the cumulative mean shift, Ap(n), which serves as "signal" in the ratio, 
i.e., Ap a n/Ap. This, of course, introduces a non-linearity into the loop, 
e.g.7 

0 
d(Ap) = Ap dnm -dn 

AP 
(19) 

d ( ~ p ) ~  a 0 dn (20) 

A p  a 6 m n3I4 (21) 

Ap a n-lI4. (22) 

Similarly, it could be the gradient, dp/dn, that the operator utilizes as "signal." 
For any constant Ap process, this derivative is also constant, and the argument 
does not change. But if Ap(n) is not constant, neither is dp/dn, and the problem 
again becomes non-linear, e.g., 

Unfortunately, the data available are even less likely to distinguish such weak 
dependencies from a constant Ap version. 

There is a somewhat subtler argument that might be advanced for the failure 
of any of the above "noiselsignal" models to capture the Ap-altering mechanism 
suggested by the operator self-reports, namely, that it is not the technical noise 
level, per se, but the subjective uncertainty experienced by the operators that is 
the salient factor in feeding the anomalous effect, and that attempting to specify 



Run Length 47 1 

or quantify this by any measure derived from the objective data streams excludes 
all of the subjective factors that may contribute to this uncertainty reservoir. (A 
similar possibility emerged from a detailed remote perception study published 
previously,'7) and a theoretical attempt to deal with this class of omission has 
been presented by ~ tmans~acher '~ ) . )  

Setting aside the failure to identify any convincing departures from a constant 
Ap model in the collective or individual databases, there remains to note the 
oddly small X2 deviations in the collective and individual datasets, in nearly all 
of the HI, LO, and A intentions, compared with their more expected behavior in 
the baseline data (cf. Table 2). Most simply summarized, it appears that 
whatever average values of Ap prevail in those datasets, their block-wise 
variations are marginally smaller than expected even for the displaced chance 
distributions, i.e., the block-wise variance in the prevailing Ap values are 
suggestively small or, alternatively, there is some degree of correlation among 
them. It is not clear that this behavior is real, since its statistical significance is 
modest and it is observed retrospectively. At most, it is a signal that similar 
experiments should be monitored for like suppression of variance. If real, this 
implies that the anomalous mean shift entails, or at least is accompanied by, 
behavior incompatible with simple probability shifts in the data; these can 
increase variation or leave it unchanged but cannot reduce it. At the very least, 
reducing the variation between samples requires a probability shift that is 
adaptive and exhibits negative feedback, so that it is weaker in runs where the 
spontaneous random variations are favorable, but stronger in runs where such 
variation is unfavorable. Alternatively, the anomalous mean shift may be 
accompanied by the imposition of autocorrelation as a side effect, or even 
accomplished by the controlled imposition of autocorrelation. Still other models 
can be proposed, the sole common feature being that some sort of time- 
dependence and/or state-dependence in the anomalous response must appear. 
Current data are far from adequate for distinguishing among these hypotheses. 
As suggested above, definitive empirical tests must await data comparisons with 
other REG-based experiments. In addition to the small X 2  values, the traces in 
several of Figures 15 through 26 give some impression of temporally structured, 
nonmonotonic variations. Evaluation of these will require application of 
harmonic analyses suitable for assessing the general temporal evolution of such 
datasets. 
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