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Abstract— Most experiments to study the anomalous interactions of human
operators with electronic random event generators (REGs) utilize devices
configured to produce output digital strings having individual binary
probabilities of precisely 0.5000, which concatenate to well-behaved
Gaussian distributions for statistical reference. Such studies thus leave
unanswered the possible sensitivity of operator performance to other settings
of the binary probability. Following a rudimentary analysis of the statistical
expectations for the output behavior of such REG variants, we constructed
a modification of our standard microREG electronics that allows binary
probability settings of 0.0625, 0.5000, and 0.9375. We also established
a protocol for a proof-of-concept experiment (POCX) that allowed each of
five operators to generate datasets of 2500 X 200-bit trials under pre-stated
High, Low, and Baseline intentions for each of these three binary settings. The
results, displayed in detail graphically and in tabular formats in this paper,
were bemusing in two respects that precluded unequivocal responses to the
basic question addressed. First, athough the experiment differed only
marginaly from our standard microREG technology, feedback modalities,
and operator protocols, it did not yield anomalous effect sizes, comparable to
those achieved in our prior experiments, even for the 0.5000 probability
setting. Second, much of the data displayed severe non-independence that
could not be attributed unequivocably to the modified REG device, per se.
Thus, these empirical confounds not only limit comparisons among the binary
probability values, but also add another generation of complications to the
interpretation of anomalous REG effectsin general.

Keywords: binary probabilities—human/machine anomalies—random event
generator (REG)

| |. Background

In an earlier study"’ we explored the possibility that the anomalous effect sizes
or, equivaently, the apparent shifts in the individual bit probability, Ap,
achieved by operators of arandom event generator (REG) might evolve over the
course of an experimental run, and that the pattern of this evolution could give
some hint about the fundamental mechanism underlying the phenomenon.
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Unfortunately, retrospective examinations of even our largest collective and
individual databases were unconvincing in distinguishing any such patterns from
constant Ap models, with the possible exception of some suggestive internal
structure correlations that are currently under further analysis.

The purpose of this report is to address an alternative possibility, namely that
anomalous REG performance might display a parametric dependence on the
nominal design value of the binary probability, p, itself. To pursue this, we
envisage an REG whoseapriori probability isnot fixed at precisely 0.5, asisthe
usual case, but can be changed over the range of 0 < p < 1.0 by some control
setting. Elementary binary statistics offers the following pertinent relations:*

n=pN (1)

o=+/(p - p*)N =PVN (2)
vp—p* P (3)

L N
Ap=NAp (4)
B o — 1 _ VN Ap 5
Z=Apy/ mﬁ Ap 7 (5)
Eu=Du/u=0Dp/p (6)
€,=2Z/VYN=Au/oVN = Ap/P )

where N denotes the number of bits processed per trial; 1 the mean count of bits
conforming to a predefined filter imposed by the experimental equipment; a
the standard deviation of p; Ap and Ap the deviations in ¢ and p imposed by
the operator's effort; and Z the trial-level statistical 2-score thereof. The quantity
P = /p — p?, introduced for parsimony of notation, actually plays the role of
a generalized probability function for al of the p # 0.5 cases, where
(pIP)* = pl(1 —p), i.e., theratio of successes to failures in the alignment of the
bit stream with operator intention. Theratio o/ was suggested in the prior paper
as an appropriate measure of the noise-to-signal ratio in the REG output,
possibly relevant to the operator's capacity to achieve some Ap. €, denotes
a dimensionless or normalized mean shift or effect size, i.e., bits atered per
mean bit count. & is the conventional 2-score denoti ng the decimal fractions of
standard deviations of the output distributions entailed by the mean shifts.
Note that for the usual case of p =05, &, = 8,, = 2 Ap. For any other case,
&= (p/P) 8#-

The theoretical sensitivity of these statistical indicators to the a priori binary
probability follows from simple differentiation:

* Note: From this point on, for parsimony of notation in the text, we shall use only the minimum
significant figures in specifying the a priori probabilities, e.g. p=0.5, etc.
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du/dp =N (®)
do/dp = (1—;?2—”)@ ©)

o =57 (10)

% = —g—zpf—p)\/ﬁ Ap (11)
s (12)
%%Z --u ;,321)) Ap (14)

Pertinently reconfigured forms of these relations are tabulated in Appendix
Table A-1 for various incremental values of p, with N and Ap carried as
parameters, presumed fixed for any given experiment. The bracketed values
below each entry are those corresponding to N = 200, which conforms to the
number of bits sampled per tria in virtualy al of our previous benchmark
experiments. Figure 1 displays the dependencies of u, a, and alp on the
prevailing nominal p-value for the N = 200 case. The principa features to be
noted are that whereas u increases linearly with p, a has a maximum at p = 0.5,
and falls in proportion to P = /p — p* symmetricaly in both directions,
reflecting the decreasing uncertainty in the count values as p approaches 0 or 1.
Consequently, the 'noiseto-signd' ratio, alp, decays steeply as
Plp = \/p —p*/p from an infinite singularity at p =0, to zero at p = 1. It
follows that in any given experiment wherein the operator achieves a constant
shift of binary probability, Ap, the corresponding mean shift is simply
proportional to Ap, independent of p, whereas the most common statistical
figure of merit, Z = Aplo, scales as Ap/P = Ap/+/p — p?, an inverted
symmetrical function with its minimum at p = 0.5 and infinite singularities at
p =0 and 1, and the normalized mean shift, 8,1 = Ap/p = Aplp, decays
monotonically as 1/p from infinity atp =0, to 1 at p=1. All of which suggests
that if Ap is indeed independent of p, experiments conducted a nominal
probabilities near p=0 or p = 1 should display stark differencesin z, €, and &,
results from those of the usual p = 0.5 settings. Moreover, symmetrically poised
low-p and high-p devices should produce equivalent Z and & results, but widely
different 8,1 results. Thus, such experiments should help to discriminate whether
a uniform shift in binary probability is indeed the fundamental achievement of
the operator, or whether some more complex mechanism is involved.
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II. Experimental Design

As afirst attempt at a proof-of-concept experiment (POCX), we designed
a "'ProbREG" device that essentially replaces the usual +, —, +, —,... binary
filter of the standard MicroREG circuit, by one requiring alignment of four
successive hits with a pre-set digital mask to yield one positive output bit (cf:
Appendix 2). Thus, the unit presents a nominal p of 0.0625 (or 0.9375), to be
compared with ap = 0.5 value obtained if only two of the four bits are required
to match. The corresponding expected output characteristics and statistical
indices are listed in Table 1. Note that for any operator-induced (constant) Ap,
the Z and &€ values should span symmetrically by a factor of about 2, while the
&, values should span asymmetrically by afactor of about 15. Conversely, if the
experiment yields a Au independent of p, we may conclude that Ap is aso
independent of p, whileif €, = Au/u isindependent of p, it would follow that
Ap is scaling as p. As a third possibility, if &, =2Z/+/N is constant over this
range of p, Ap must be scaling as 7. Table 2 summarizes various potentialy
discriminating expectations.

II1. Calibrations

The pre-stated protocol for this POCX required each of five anonymous
operators to generate 25 balanced series, each comprising 100 trials per intention
(High, Low, Baseline) for each of the set p-values (0.0625, 0.5, 0.9375). These
were normally accumulated in 50-tria runs, with session lengths and feedback
options (digital, graphic, none) |eft to the operator's discretion. At completion of
any session, a full series of calibration data were automatically collected. In
addition, much larger blocks of calibration data were accumulated from
unattended continuous operation of the device over nights and weekends. All
told, over 12 million calibration trials were performed, with the results
summarized in Table 3. From these we conclude that the unit functions
essentially as designed, with the dight exceptions that the empirica bit
probabilities differ from their design values of 0.0625, 0.5, and 0.9375 by
—.00010, +.00005, and +.00012, respectively. Since these trandate to differ-
ences in the mean values that are comparable to those typically achieved in
active REG experiments, we henceforth will compare the experimental means
with the calibration values, rather than with the theoretical expectations
(even though our standard tri-polar protocol should yield essentially untainted
High - Low differences). The deviations of the calibration values of the three
trial-level standard deviations are small enough not to affect significantly any
pertinent statistical calculations. In short, for proof of concept purposes, the
ProbREG unit seems more than adequate to proceed with analysis of the
operator-generated data.
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Table I: Theoretical REG Output Characteristicsfor p =0.0625, 0.5, and 0.9375
P P U o o/u Z/Ap | Eu/Ap E:/Ap
0.0625 2421 12.5 3.423 2738 58.41 16 4.131
0.5 .5 100 7.071 07071 | 28.28 2 2
0.9375 2421 187.5 3.423 01826 | 58.41 1.067 4.131
Table 2: Anticipated Responses of ProbREG POCX
.to Various Ap Dependencies on p
Ap model A Apfp z
Ap constant constant oc 1/p < /P
Apecp <p constant o< p/P
Ape<llp o 1/p o 1/p? o< 1/pP
Ap- P o< P <P/p constant
Apo< 1/P o 1/P < l/p o 1/P?
Statistical Indicators vs. Probability
8 250
7 - —
6 T _a 200 -0
| >
2/ 7N\ [ - 100/[
§ 4 V / \ = —~—H
"3 T 100
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50
L >
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Fig. 1. Theoretica dependence of mean, standard deviation, and their ratio on the nominal p-value
for N = 200.
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Table 3: ProbREG Calibration Performance

P N¢ Po He u (4 Oc do Pc &
0.0625 1,517,450, 125 | 12.4805|-.0195 |3.4232|3.4176 |-.0056 |0.06240|-.00010

0.5000| 1,517,700| 100.0 | 100.0098 | +.0098 | 7.0711 | 7.0676 |-.0035 |0.50005 |+.00005

0.9375(1,517,700| 187.5 | 187.5233 | +.0233 | 3.4232|3.4200 |-.0032 |0.93762 | +.00012

KEY
p, = design binary probability o, =design trial level standard deviation
N, = number of calibration trials 0O, =cdlibration tria-level standard deviation
M, = design trial mean 6c = Q, -0,
M = calibration trial mean pc = calibration binary probability
U = e — Uy & = pc-Po

V. Empirical Data

Numerical tabulations of the POCX data and the statistical figures of merit
derived therefrom are presented in Tables A-2 to A-7 of the Appendix. More
illuminating graphical representations follow in this text as Figures 2 through 9,
which plot the Ax, Aul/uc, Z, and Z* values for al five operators, three
intentions, and three a priori binary probability settings, in two alternative
formats. Most immediately apparent from even casual examination is that the
overall datadisplay no remarkable anomal ous mean shift patterns comparable to
those found in the earlier **benchmark” REG studies,'” evenfor the p = 0.5
setting. More specifically, in the p= 0.5 case (Figures 2 & 6), the mean shifts
achieved by the individual operators scatter in such a fashion to combine to
a composite High - Low value well below that obtained overal in our
benchmark experiments (.02), and indeed in the direction opposite to intention.
Of thefive operators, only B reaches an interesting High — Low difference (.35),
which for this small database is only marginally significant (p = 0.04, one-
tailed).
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Fig. 2. Mean shifts achieved by five operators for three intentions and three binary probabilities:
(a) p = .0625; (b) p=.5000; (c) p=.9375.
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Fig. 3. Normalized mean shifts achieved by five operators for three intentions and three binary
probabilities: (a) p=.0625; (b) p=.5000; (c) p=.9375.
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Fig. 4. Z-scores achieved by five operators for three intentions and three binary probabilities:
(&) p = .0625; (b) p = .5000; (c) p = .9375.
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Fig. 6. Mean shifts achieved for three binary probabilities by five operators under three pre-stated
intentions: (a) High, (b) Low, (c) Baseline, (d) High - Low (A).
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Fig.6. (cont.): Mean shiftsachieved for three binary probabilitiesby five operators under three pre-
stated intentions: (a) High, (b) Low, (c) Baseline, (d) High — Low (A).




—

ProbREG 485

(a) High

0.010
0.008
0.006
0.004
0.002 *

5"”: 0.000 i

0.002
-0.004

-0.006
-0.008 Operator

-0.010

(b) Low
0.010

0.008 *
0.006
0.004 AE @1

0.002
"u% 0.000 : § t *

-0.002 A

-0.004

-0.006 A

-0.008

-0.010

0.0625 0.5000 0.9375
p

Fig. 7. Normalized mean shifts achieved for three binary probabilities by five operators under three
pre-stated intentions: (a) High, (b) Low, (c) Baseline, (d) High - Low (A).
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Fig. 7. (cont.): Normalized mean shifts achieved for three binary probabilities by five operators
under three pre-stated intentions: (a) High, (b) Low, (c) Baseling, (d) High — Low (A).
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Fig. 8. Z-scores achieved for three binary probabilities by five operators under three pre-stated
intentions: (a) High, (b) Low, (c) Baseline, (d) High - Low (A).
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Fig. 8. (cont.): Z-scores achieved for three binary probabilities by five operators under three pre-
stated intentions: (a) High, (b) Low, (c)Baseline, (d) High - Low (A).
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Fig. 9. Squares of Z-scores achieved for three binary probabilities by five operators under three
pre-stated intentions: (a) High, (b) Low, (c) Baseline, (d) High — Low (A).
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Fig. 9. (cont.): Squares of Z-scores achieved for three binary probabilities by five operators under
three pre-stated intentions: (a) High, (b) Low, (c) Baseline, (d) High — Low (A).
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V. Data Interpretation

Thislack of replication of previoudly established effects has been encountered
in a number of other contexts in our laboratory and elsewhere,* to the extent
that it is widely regarded as an inescapable characteristic of the basic
phenomena, theimplications of which have been discussed in various theoretical
contexts.*>%7 But in this particular study, it seriously confounds the search for
empirical discriminators among the possible Ap mechanisms, given the
inescapably large experimental and theoretical error bars on the empirical data.
Notwithstanding this complication, since it has proven instructive in other
situations to examine various subtler aspects of the data structure for alternative
evidence of extra-chance behavior, we shall also pursue this strategy here.

In this spirit, next to be noted is that while the operator-segregated data of
Figure 2 contain no other remarkable individual performances, they do display
considerably more inter-operator variability in thep=0.5 reference casesthan in
the p = 0.0625 and p = 0.9375 extremes, consistent with the elementary model
predictions of the respective standard deviations. But, beyond this, the relatively
weak variability of the inter-operator and inter-condition data raises statistical
suspicions of adifferent kind, to be treated below. As expected from the basic
statistical relations, non-dimensionalizing the mean shifts by the pertinent values
of the calibration means, Au/puc (Figures 3 & 7), explodes the 0.0625 values
considerably, and constricts the 0.9375 values dlightly, but offerslittle additional
physical insight. More instructive are the corresponding Z-score patterns
(Figures 4 & 8), which render the inter-operator variations into considerably
more compatible comparisons. In fact, these essentially homogeneous arrays are
totally non-significant, perhaps extraordinarily so, and thus tend to favor the
Z-independent-of-p, i.e. Ap « P hypothesis alternative originally suggested in
the design of the experiment. (This indication concurs with a similar result
obtained in an earlier experiment using pre-recorded targets reported by
Schmidt.®)

In an attempt to quantify the Ay and Z-score compactions, we may perform
a standard chi-sguared analysis, with the results shown in Figures 5 and 9. The
upshot of these calculations is that the experimental values areindeed clustering
around the chance mean to an extent approaching, and in some cases exceeding,
statistical significance. This, of course, is tantamount to some sort of hidden
correlation among the various components of the operator/intention/probability
matrix, for which thereis no evident physica or psychological basis. To validate
thisstructural anomaly in the experimental data, we may resort to a Monte Carlo
simulation technique we have employed in other contexts,®> whereby many
dummy data sets are constructed from the calibration data reservoir, of identical
size and indexing to those of the experimental data. The distribution function of
these dummy sets may then be used for estimating the extent of the departure of
the experimental arrays from the chance expectations.
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Table 4: Monte Carlo Data Simulations Based on Calibration Data
p =0.0625 p=05 p=09375
Nc¢ 1,517,450 1,517,700 1,517,700
He 12.480463 100.009847 187.52337
o, 3.417568 7.067636 3.41990
Ny 606 607 607
Au, —-.019537 +.0009847 +.02337
g, 957454 990361 1.000078

These simulation calculations were performed by assembling as many
independent 2500-trial subsets of the available calibration data as possible (607)
for each of the initial probability values and computing from the mean values
and standard deviations thereof the corresponding dummy Z-scores and sums of
Z* for &l possible combinations of dummy operators, intentions, and a priori
binary probabilities (45). The results are displayed in Table 4, where N denotes
the number of calibration trials available, with ¢ and o their respective trial-
level means and standard deviations. N, denotes the number of independent
2500-trial dummy sets utilized, Ap, the deviation of their trial means from
expectation, and ¢, the standard deviations of their Z distribution.

Compounding the corresponding Z* values over the 45 degrees of freedom
entailed by the five-operator, three-intention, three-probability matrix for the 40
independent simulations yields a distribution having a mean of 43.55 and
a standard deviation of 8.68. The theoretical expectation for 3,472 is, of
course, 45, with a 0 of 9.49. Given the dightly smaller simulation vaues of
o4 tabulated, the corrected expectation would be 43.4653. The empirical value
from the active experiments is 26.94, which differs from the theoretical
expectation by —18.06, from the adjusted expectation by —14.24, and from the
simulation mean by —13.91, having corresponding 2-scores and one-tailed
probabilities of 2.01 (p = 0.022), 1.589 (p = 0.056), and 1.552 (p = 0.060),
respectively, all margina by conventional statistical standards, but possibly
noteworthy.

VI. Discusson

We are thus left with a dilemma whether to attribute the compression of
empirical Z-scores to an operator-induced structural anomaly akin to those we
have identified in other experiments,” or to a technical auto-correlation non-
ideality in the functioning of the POCX device. The slight narrowing of the
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standard deviations of the calibration mean distributions would seem to favor the
|atter interpretation, as would the ubiquitous appearance of Z and Z* congestion
in virtually al of the conditions tested in the active experiment. On the other
hand, the extensive Monte Carlo simulations of the 2-scores, based on the same
empirical calibration data, in their close concurrence with theoretical expect-
ations would seem to favor the former deduction. If these correlations are indeed
some subtle form of operation-induced structural anomaly in the datasets, we
face a difficult phenomenological interpretation. Namely, by what conceivable
mechanisms can five different operators, utilizing their individual techniques to
achieve anomalous High - Low separations of mean shifts from an experimental
target configured to three widely disparate binary probabilities, unconsciously
conspire to produce results that are substantially more correlated among
themselves than should be expected by chance, even when they compound to
statistically negligible primary effects? Bizarre as such secondary anomalies
may appear, we have tended to encounter many forms of these in various other
experimental contexts, leading us to speculations that such are intrinsic
aternative expressions of the operator-induced anomalous behavior that will
need to be accommodated in any comprehensive theoretical model of the
phenomena.

All of this equivocation notwithstanding, we nevertheless can take away two
useful insights from this POCX study. First, despite the small effect sizes, it
appears that the best common denominator for various binary p experimentsis
the standard statistical 2-score, rather than the mean shifts, per se, normalized or
not. Thisin turn predicates the deduction that the Ap that can be achieved scales
as the prevailing generalized probability, P = \/p — p?, rather than with p itself,
or independent of it.

Second, from an operationa perspective, we reluctantly concede that neither
of the extreme initial probability settings has displayed sufficiently radica
departure from the p = 0.5 data to encourage refinement of the device and
collection of the order-of-magnitude—larger databases we would need to
discriminate the origina alternative hypotheses and structural features more
authoritatively, let aone to attempt to exploit p # 0.5 technology to other
research and application purposes.
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APPENDIX 1
Effect Sizes

Our REGs are characterized by a nominal binary probability, 0 < p < 1.0,
usually 0.5. Our protocols specify the total number of bits sampled, N, aggre-
gated in some number of trials, runs, and series.” The primary measurableisthe
output mean, which has a theoretical chance expectation, y, = pN, with a
theoretical standard deviation, ¢ = P+/N, where P = +/p(1 — p).

In an operator-driven experiment, anomalous performance can be represented
in various ways.

e Mean shift: Au=pu — u,=N Ap
e Normalized mean shift: €, = Ap/u, = Aplp
e Z-score: Z= Aulo =N Ap/v/N P = /N (Ap/P)

o Z effect size: &, =Z/v/N = Ap/o/N = Ap/P

where Ap, the operator-induced change in the bit probability, is treated as the
most fundamental empirical index of the anomalous effect.

The following Tables A-1 through A-7, described in detail in the text,
presume these definitions.



Table A-1: Dependence of Various REG Output Characteristics on Nominal Binary Probability

U/J—I:I-T%'\/_ﬁ z/IN ap | ) /\/% d_(a/_ﬂ_).\[ﬁ (%)/NAP %(%)/Ap

J0) ® GG do )/ Y @ [ a

01 01 0995 | 9.950 10.05 @ |\ %Pab2s - 5025 -994.8 — 10000.

[2] [1.407] {.7036] | [142.1) [69.65] [-35.531 [— 14068]

.05 .05 218 4.359 4587 20. 2.064 - 4587 -86.87 - 400.
[10] [3.083] {.3082] [64.87] [29.19] [- 3.2431 [- 12201

1 Rl 3 3. 3.333 10. 1.333 - 16.67 -29.62 - 100.
[20] [4.243] [.2121] [47.14] [18.85] [- 11791 [- 41891

2 2 4 2. 25 5. 75 -6. -9375 - 25.
[40] [5.6571 | [.1414] [35.36] [10.61] [-4243) | [-1261

3 3 458 1527 2.182 3.333 437 -364 -4.162 - 1111
{60] (64771 | [.1080] [30.86] [6.180] [-.2574] [- 58.821

4 4 490 1225 2.041 25 204 - 255 - 1701 -6.25
[80] [6.930] [.08662] | [28.86] [2.885] [~ .1803] [- 24.061

5 5 5 1. 2. 2. 0 -2 0 -4,
[100] [7.071] [.07071] [28.28] [0] [-.1414] [0]

6 6 490 817 2.041 1.667 - 204 -17 1.701 - 2778
{120] [6.930] [.05777]1 | [28.86} [- 2.8851 [-.1202} [24.06]

7 7 458 654 2.182 1.429 — 437 - 156 4,162 - 2041
{1401 [6.477] (046241 | [30.86] [- 6.1801 [ .1103] [58.82]

8 8 4 5 25 1.25 -.75 - 156 9.375 - 1.563
[160] [5.657] .03536] | [35.36] [- 10611 [~ .1103] [132.6]

9 9 3 .333 3.333 1111 -1.333 -185 29.62 -1235
[180] [4.243] [.023551 | [47.14] - 18.851 [-.1308] [41891

95 .95 218 229 4587 1.053 _2.064 - 2414 86.87 -1.109
[190] [3.083] [.01619] | [64.87] [- 29.191 [-.1707] [1229]

.99 .99 0995 .1005 10.05 1.010 -4.925 -5.076 994.8 -1.020
[198] [1.407] [.00711] | [142.1] [ 69.651 [-.3589] [14068]

*

Circled numbers denote pertinent equationsin text.
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Table A-2: p =0.5; by Operator §
N | su=p-u Mlpe | z=muNio, | z
High Intentions
2500 100,0348 024953 000250 176444 031133
2500 100.2432 233353 ,002333 1650055 2722681
2500 99.8729 -.136950 -.001370 -.968360 937724
2500 99.8176 -.192250 -001920 -1.359390 1.847945
2500 100.0744 064553 000645 1456459 208354
12500 100,0086 -.001270 —.000013 -.008959 000080 (1 _=5.747837)
Low Intentions =
2500 100.1272 117353 001173 829811 688586 :
2500 99.8984 111450 —001114 788049 621022 a
2500 100.1050 095153 000951 672833 452705 =
2500 99.9496 060250 - 000602 — 426011 181485 §‘
2500 100,0724 062553 ,000625 442317 ,195644 o
12500 100.0305 ,020673 1000207 146180 021369 (= 2.139442) il
Basdlines (.j
2500 100,0780 068153 000682 481914 232242 :
2500 100.0236 013753 000138 097248 1009457 s
2500 99.8704 -.139447 —.001390 986039 972273 o &
2500 100.2246 214753 002147 1518533 2.305943 2
2500 99.9236 ~.086247 ~.000860 609858 371927 2
12500 100.0240 014193 000142 .100360 010072 (L = 3.891842)

Table A-3: p =0.5; High — Low Differences, by Operator

2

N o é;ulluc Z‘;:(ZH, _Zw)/‘/E Zs
A 5000 —.0872 ~000870 ~.462000 213444
B 5000 3448 003448 1.724000 2.972176
c 5000 -2321 ~002320 -1.160499 1.346757
D 5000 -.1320 ~.001320 —.659999 435598
E 5000 0072 ,000072 .010000 .000100

LAl | 25000 -0219 -000219 -.109700 012034 (- = 4.968075)
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Table A-4: p =0.0625; by Operator

Op. # N 2 Apt =~ pic Aplp, , Z=A,u«/ﬁ/o-C ‘ z?
High Intentions
A 2500 124912 ,010737 .000860 .156824 ,024594
B 2500 125120 ,031537 .002527 460627 212178
c 2500 12.4937 013237 .001061 .193339 037380
D 2500 12.5400 059537 .004770 .869594 756193
E 2500 12.4736 —.006860 —.000550 -.100241 ,010048
All 12500 12,5021 021637 001734 .316029 099874 (= = 1.040393)
Low Intentions
A 2500 12.4960 ,015537 001245 ,226932 .051498
B 2500 12,5184 037937 .003040 .554105 .307033
c 2500 12.4617 -.018763 —.001503 —.274051 075104
D 2500 12.5880 .107537 .008616 1.570678 2467031
E 2500 124116 -.068863 -.005518 -1.005808 1.011651
All 12500 124951 ,014677 001176 ,214371 045955 (- = 3.912317)
Baselines
A 2500 12.5084 027937 002238 ,408046 ,166502
B 2500 12.4836 .003137 .000251 045819 .002099
c 2500 12.4650 -015463 -.001239 225852 .051009
D 2500 124112 -.069263 -.005550 -1.011651 1.023437
E 2500 12.4844 1003937 000315 ,057504 ,003307
All 12500 12.4705 -.009943 ~000797 -.145227 021091 (= 1.246354)
Table A-5: p =0.0625; High — Low Differences, by Operator

Op. # N au quine 1 2,=(2y-2,)IV2 Z;
A 5000 -.0048 -.000385 —.049574 002458
B 5000 -.0064 -.000513 —.066099 004369
C 5000 0320 ,002564 ,330495 ,109227
D 5000 -.0480 —.003846 495742 ,245760
E 5000 0620 .004968 .640333 ,410027
All 25000 .0070 .000561 071883 005167 (1) =.771841)

DHA90d

L6



! Table A-6: p =0.9375; by Operator E
Op. # N P A== g, Mulp, | Z=tuINio, | 7’
High Intentions
| 2500 1875560 ,032663 000174 477074 227599
B 2500 187.4740 -.049336 -.000263 —720613 519283
B 2500 187.5146 —.008737 —.000047 —127612 ,016285
B 2500 187.4330 -.090337 —.000482 -1.319456 1.740965
] 2500 187.5984 075063 000400 1.096365 1.202017
B 12500 1875152 008137 -.000043 —.118848 ,014125(71 = 3.706149)
. Low Intentions =
- 2500 187.5752 051863 000277 757508 573818 ’
] 2500 187.4596 -063737 —.000340 -.930938 866646 =
. 2500 1875313 007963 000042 116307 013527 o
I 2500 187.4492 -.074137 —000395 -1.082840 1172543 E‘
|| 2500 187.5700 046663 000249 681557 464520 &
! 12500 1875171 006277 -.000033 —.091681 008405 (U = 3.091054) o
. Basdlines (.)
B 2500 187.5216 —-001737 000009 —.025371 000644 :
= 2500 187.5560 032663 000174 477074 227599 =
B 2500 187.4808 —042537 -.000227 -.621293 386005 o
B 2500 187.4420 -.081337 -.000434 -1.188003 1411351 2
. 2500 187.5484 025063 000134 366069 134006 3
l 12500 187.5098 —.013577 —.000072 -.198305 .039325 (I~ = 2.159605)
Table A-7: p =0.9375; High — Low Differences, by Operator

N du au/l pe ZJZ(ZH[_ZM)/JE z;

5000 -0192 -.000102 -.198297 039322
B 5000 0144 000077 148723 022118
| 5000 —0167 —.000089 —.172477 029748
] 5000 -0162 —.000086 -.167313 027994
l 5000 0284 000151 293314 086033

25000 -.0193 —.000103 - 199330 .039732 (0 = ,205215)
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APPENDIX 2
Technical Design

Several options were considered for provision of the variable probability bit
sources for the POCX ProbREG studies. As a compromise among precision of
operation, simplicity of implementation, and similarity to our standard REG
devices, we opted to interface one of our existing microREG units with
a dedicated circuit utilizing an embedded microprocessor (PICI6F628), and its
native RS232 interface. In addition to providing stabilized 5V power for the
microREG, this circuit accumulated the individual bits from the output streams
for filtering to the desired preset probabilities, as instructed by the PC
controlling the experiment, and for downstream recording of the data. To
accomplish thethree binary probability options, a4-bit mask was used in various
configurations. For the .0625 case, only input bits matching one of the 16
possible combinations of template values produced a “1”* output. For the .9375
case, al but one combination produced a 1" output. To recover the comparison
.5000 case, eight of the combinations passed a ““1”* digit. In any situation, the
bits were packaged into 200-bit trials and sent to the PC at a rate of
approximately one trial per second.

UREG ProbREG w

Computer

-Generates a -Provides power to

digital stream UREG.

gftrandom -Accepts configuration
its.

commands from PC.
-Filters raw bits to

-Records Experimental

create trials with new Parameter_s. .
binary probabilities. -Sets configuration for
-Indicates status with ProbREG. .
colored LEDs -Provides graphical feedback
-Sends data to PC. to operator.
-Stores operator data on hard
disk.
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